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Process experimentation

with a single factor

Experiment, and it will lead you to the light. (Cole Porter, ‘Experiment’ from Nymph

Errant, 1933)

Overview

This chapter deals with statistical tools that are relevant to the improve phase of Six Sigma

projects. Havingmade changes to a process, how dowe formally assess data from themodified

process for evidence of improvement? Statistical inference techniques may be use to address

questions such as:

. Has the change of supplier of the lens coating fluid led to a reduction in the proportion of

nonconforming lenses?

. Has the appointment of specialist nurses, empowered to administer thrombolytic

treatment to acute myocardial infarction patients on admission to hospital, led to a

reduction in the mean door to needle time?

Estimation techniques provide point estimates of the population proportion and the

population mean, respectively, for the modified processes in the above scenarios, i.e. of

population parameters that are of interest. Estimation techniques provide intervals inwhichwe

can have confidence that the values of the parameters are located.

Some of the techniques are based on the normal distribution while others make no such

assumption. Minitab is well equipped to deal with both classes of technique.
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7.1 Fundamentals of hypothesis testing

In Chapter 1, the description of the improve phase in a Six Sigma project given by Roger Hoerl

included the statement ‘determine how to intervene in the process to significantly reduce the

defect levels’ (Hoerl, 1998, p. 36). Process experimentation may be thought of as a formal

approach to the question of determining how to intervene in the process in order to improve it.

Wheeler (1993, p. 21) writes:

. Before one can improve any system one must listen to the voice of the system (the voice

of the process).

. Then one must understand how the inputs affect the outputs of the system.

. Finally, one must be able to change the inputs (and possibly the system) in order to

achieve the desired results.

. This will require sustained effort, constancy of purpose, and an environment where

continual improvement is the operating philosophy.

Wheeler (2007, p. 7) distinguishes between observational and experimental studies. The

routine collection of data in order to monitor, using control charts, a process running under

normal conditions is an example of an observational study. The collection of data on a process

when it is being run under special conditions, with a view to learning how the process might be

improved, is an example of an experimental study. He states: ‘when we analyze experimental

data we are looking for differences that we have paid goodmoney to create and that we believe

are contained within the data’.

Consider the process of administering thrombolytic treatment to acute myocardial

infarction patients at a hospital. Records show that the process has been behaving in a

stable, predictable manner, with door to needle time (DTN) being adequately modelled by

the normal distribution with mean 19 minutes and standard deviation 6 minutes. An

experiment was conducted over a period of 1 month during which one of a team of specialist

nurses, empowered to administer the thrombylotic treatment, was on duty at all times in the

accident and emergency department of the hospital. The DTN times for the 25 patients treated

during the experimental period are shown in Table 7.1 and are available in the worksheet

DTNTime.MTW. The mean DTN for acute myocardial infarction patients during the

experimental period was 16.28 minutes. Does this sample mean represent a ‘real’ improve-

ment to the process in the sense of a reduction of the population mean DTN for acute

myocardial infarction patients from 19 minutes to a new, lower population mean? Can

we infer from the data that the regular deployment of the specialist nurses would ensure

process improvement?

Table 7.1 DTN (minutes) during experimental period.

26 7 24 3 12

17 24 4 5 16

16 22 14 15 14

19 21 18 14 20

29 20 17 9 21
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The various steps involved in performing the appropriate statistical inference will now be

detailed under the headings Hypotheses, Experimentation, Statistical model and Conclusion.

Hypotheses. Denoting the null hypothesis by H0 and the alternative hypothesis by H1, our

hypotheses are:

H0 : m ¼ 19; H1 : m < 19:

The null hypothesis represents ‘no change’ – were the introduction of the specialist nurses

to have no impact on DTN, the population mean would remain at 19 minutes. Thus m

represents the population mean DTN with the specialist nurses deployed. The alternative

hypothesis represents what might be referred to as the experimental hypothesis – the objective

of the experiment is to determinewhether or not there is evidence that the specialist nurse input

improves the process by leading to a mean DTN time which is less than 19 minutes.

Experimentation. During an experimental period of 1month, with specialist nurse input, the

mean DTN for the 25 patients treated was 16.28 minutes.

Statistical model. Three assumptions are made:

1. The variability of DTN time is assumed to be unaffected by the process change, i.e. it is

assumed that the standard deviation continues to be s¼ 6 minutes.

2. The null hypothesis is assumed true, i.e. it is assumed that the process mean continues to

bem¼ 19minutes. (This is analogous to the situationwhereby the defendant in a trial in

a court of law is considered innocent until there is evidence to the contrary.)

3. The sample of 25DTNs, obtained during the experimental period, is regarded as a

random sample from the population of normally distributed times with mean 19 and

standard deviation 6 minutes.

The statistical model is detailed in Box 7.1.

The question asked of the statisticalmodel is ‘What is the probability of observing a sample

mean for 25 patients which is 16.28minute or less?’Minitab readily provides the answer using

Calc>ProbabilityDistributions>Normal toobtain theSessionwindowoutput inPanel7.1.

Cumulativeprobabilitymust be selected,withMean:19,Standarddeviation:1.2 and Input

constant: 16.28 specified. Thus, if the null hypothesis was true, i.e. if the deployment of the

specialist nurses had no impact on mean DTN, then the probability of observing a mean for a

sample of 25 patients as low as 16.28, or lower, would be 0.012 (to three decimal places).

This probability of 0.012 is the P-value for testing the hypotheses specified above.

Conclusion. It is conventional in applied statistics to state that a P-value less than 0.05

provides evidence for rejection of the null hypothesis, in favour of the alternative hypothesis, at

Door to needle time, Y, is normally distributed with mean 19 and standard deviation 6, i.e.

Y � Nð19; 62Þ. Mean DTN for samples of n¼ 25 patients, �Y , will be normally dis-

trinbuted with mean m �Y ¼ m ¼ 19 and standard deviation s �Y ¼ s=
ffiffiffi

n
p ¼ 6=

ffiffiffiffiffi

25
p

¼ 1:2,
i.e. �Y � Nð19; 1:22Þ.

Box 7.1 Statistical model.
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the 5% level of significance. A P-value less than 0.01 would be said to provide evidence for

rejection of the null hypothesis, in favour of the alternative hypothesis, at the 1% level of

significance. (The value 0.001, corresponding to the 0.1% level of significance, is also widely

used and 0.1, corresponding to the 10% level of significance is sometimes used.) In addition to

the highly technical statement that ‘the P-value of 0.012 provides evidence for rejection of the

null hypothesis, in favour of the alternative hypothesis, at the 5% level of significance’, it is

important to state that ‘the experiment provides evidence that mean DTN is significantly

reduced through the deployment of the specialist nurses’ and that ‘a point estimate of the new

mean DTN is a little over 16 minutes’. (It should be noted that although the result of the

experiment is statistically significant, a reduction of themeanDTN of around 3minutesmight

not be of any practical significance from a medical point of view. Statistical significance does

not equate to practical significance.)

From now on the use of the word ‘evidence’ will imply that the evidence is convincing,

where theword ‘convincing’ can be further qualified by the significance level. In teaching this

topic the author has taught his students to think in terms of a P-value less than 0.05 providing

evidence for rejection of the null hypothesis, a P-value less than 0.01 providing strong

evidence and aP-value less than 0.001 providing very strong evidence. AP-value less than 0.1

might also be regarded as providing slight evidence for rejection of the null hypothesis.

Of course the mean DTN might have remained at 19 minutes with the introduction of the

specialist nurses and the experimenters might have been unlucky enough to obtain a sample of

timeswith a low enoughmean to provide evidence, in the sense discussed above, of a reduction

in the population mean time. Two types of error can occur in the performance of a test of

hypotheses as indicated in Table 7.2.

The probability of a Type I error is denoted by the Greek letter a (alpha) and is the

significance level of the test. Thus, if one decides to perform a test of hypotheses at the 5% level

of significance, a¼ 0.05 and there is a probability of 0.05 that the null hypothesis will be

rejected when it is in fact true. In the case of the DTN scenario this means that, were the

Table 7.2 Possible errors in testing hypotheses.

Errors possible in

testing hypotheses

True state

H0 true H0 false

Conclusion reached Accept H0 Correct decision Type II error

probability¼b

Reject H0 Type I error

probability¼a

Correct decision

Cumulative Distribution Function

Normal with mean = 19 and standard deviation = 1.2

x P( X <= x )

16.28 0.0117053

Panel 7.1 Probability that sample mean is 16.28 minutes or less.
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introduction of the specialist nurses to have no impact whatsoever on the mean of 19 minutes,

there is a probability of 0.05 that the conclusion would be the erroneous one that there was

evidence of a decrease. The lower the significance level selected then the lower the risk of

committing a Type I error.

Having decided, say, on a significance level of a¼ 0.05 for the DTN experiment, one can

use Calc>Probability Distributions>Normal. . . to complete the final stage of reaching a

conclusion in a different way. The statistical model indicates that the means of samples of 25

times follow the N(19,1.22) distribution. Panel 7.2 displays the Session window output

obtained using the Inverse cumulative probability function for this normal distribution via

Calc>Probability Distributions>Normal. . . and specifying Input constant: 0.05. Thus

the cut-off between acceptance and rejection of the null hypothesis occurs at the value 17.026 2

for the sample mean. The conclusion would therefore be:

. Do not reject H0 if the sample mean is greater than 17.026 2.

. Reject H0 if the sample mean is less than or equal to 17.026 2.

From the data it was established that the samplemeanwas 16.28. Since this is less than 17.026 2

the conclusion reached was to reject the null hypothesis at the significance level of a¼ 0.05.

A graphical representation of the test is displayed in Figure 7.1. The use of the 5%

significance level corresponds to an area of 0.05 in the shaded left-hand tail of the normal curve

Inverse Cumulative Distribution Function

Normal with mean = 19 and standard deviation = 1.2

P( X <= x ) x

0.05 17.0262

Panel 7.2 Determining the cut-off mean DTN.

Figure 7.1 Critical region for the statistical test.
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that specifies the statistical model for the distribution of sample means in this case. As only

one tail of the distribution is involved, this test may be referred to as a one-tailed test. Values of

the sample mean DTN less than 17.026 2 comprise the critical region for the test.

Suppose now that the deployment of the specialist nurses had actually led to a reduction in

the mean of the population of DTNs from 19 to 16 minutes. What is the probability that, once

data are available for a random sample of 25 patients, the conclusion reached – to rejectH0 in

favour ofH1 – will be the correct one?We require the probability of observing a sample mean

of 17.0262 or less when the population mean is actually 16. Again Calc>Probability

Distributions>Normal. . . provides the answer – see Panel 7.3.

Thus there is a probability of 0.80 (to two decimal places) of the test of hypotheses

providing evidence of a three-minute reduction in the population mean DTN. This probability

is the power of the statistical test to detect the change from a population mean of 19 minutes to

a population mean of 16 minutes. The other side of the coin is that there is probability

1 � 0.80¼ 0.20 of the experiment failing to provide evidence of the reduction, i.e. there is

probability b¼ 0.20 of committing a Type II error with a test based on a sample of 25 patients

when the mean actually drops from 19 to 16 minutes. (The Greek letter b is beta.)

Figure 7.2 show a plot of the power of the test against the populationmean after the process

change. The greater the drop in the population mean the more likely it is that the test will

provide evidence of the change, i.e. the more powerful is the test. For example, were the mean

to drop by 1 minute, so that the population mean after the process change became 18 minutes,

Cumulative Distribution Function

Normal with mean = 16 and standard deviation = 1.2

x P( X <= x )

17.0262 0.803771

Panel 7.3 Probability of rejecting null hypothesis when new population mean is 16.

Figure 7.2 Power curve for the statistical test.
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then the probability is 0.21 that the conclusion would be to reject the null hypothesis. On the

other hand, were the mean to drop by 5 minutes, so that the population mean after the process

change became 14 minutes, then the probability is 0.99 that the conclusion would be to reject

the null hypothesis. The power of a test may be increased through use of a larger sample.

Now consider the lens coating process referred to in the previous chapter. Records show

that prior to the change of coating fluid supplier the process was yielding 4.5% nonconforming

lenses. In an experimental run with the new coating fluid there were 80 nonconforming lenses

in a batch of 2400, i.e. 3.3% nonconforming. Can we infer from these data that there has been

process improvement?

Hypotheses. In this case, using p to represent the population proportion of nonconforming

lenses,

H0 : p ¼ 0:045; H1 : p < 0:045:

The null hypothesis represents ‘no change’ – were the switch to a new supplier of the

coating fluid to have no impact on nonconformance, the proportion of nonconforming lenses

would remain at 0.045. The alternative hypothesis represents the experimental hypothesis –

the objective of the experiment is to determine whether or not there is evidence that the

change of supplier improves the process by leading to a reduction in the proportion of

nonconforming lenses.

Experimentation. From an experimental run, during which 2400 lenses were processed, 80

were found to be nonconforming.

Statistical model. Three assumptions are made:

1. The null hypothesis is assumed to be true, i.e. that the proportion of nonconforming

lenses is assumed to be unaffected by the process change and remains at 0.045.

2. The conditions for the binomial distribution apply, i.e. that there is constant probability

of 0.045 that a lens is nonconforming and that the status of each lens is independent of

that of all other lenses.

3. The set of 2400 lenses, manufactured using coating fluid from the new supplier, may be

considered as a random sample from a population of lenses in which the proportion

0.045 is nonconforming.

The statistical model is detailed in Box 7.2.

The question asked of the statistical model is: ‘What is the probability of observing 80 or

fewer nonconforming lenses in a batch of 2400?’ Minitab readily provides the answer using

Calc>Probability Distributions>Binomial. . . to obtain the output in Panel 7.4. Cumu-

lative probabilitymust be selected, with Number of trials: 2400, Event probability: 0.045

and Input constant: 80 specified. Thus, if the null hypothesis were true, i.e. if the change of

supplier had no impact on the proportion of nonconforming lenses, then the probability of

The number of nonconforming lenses, Y, in a batch of 2400 will have the binomial

distribution with parameters n¼ 2400 and p¼ 0.045, i.e. Y � Bð2400; 0:045Þ.

Box 7.2 Statistical model.
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observing 80 or fewer nonconforming lenses in a batch of 2400 would be 0.0024. Thus 0.0024

is the P-value for testing the hypotheses specified above.

Conclusion. Since theP-value is less than 0.01¼ 1% the null hypothesiswould be rejected in

favour of the alternative hypothesis at the 1% significance level. Thus the data from the

experiment provide strong evidence that the change of supplier has led to a significant

reduction in the proportion of nonconforming lenses from the previous level of 4.5%. A point

estimate of the new proportion of nonconforming lenses is 80/2400¼ 0.033¼ 3.3%.

Having decided, say, on a significance level of a¼ 0.01¼ 1% for the lens coating

experiment, one can use Calc>Probability Distributions>Binomial. . . to look at the final

stage of reaching a conclusion in a different way. The statistical model indicates that the

number of nonconforming lenses in a batchwill have theB(2400, 0.045) distribution. Panel 7.5

displays the Session window output obtained using the Inverse cumulative probability

function for this binomial distribution via Calc>Probability Distributions>Binomial. . .

and specifying Input constant: 0.01. Thus the cut-off between acceptance and rejection of the

null hypothesis occurs at the value 84 for the number of nonconforming lenses in the batch

when the significance level isa¼ 0.01¼ 1%.With the discrete binomial distribution it has not

been possible to determine a valuex such thatP(X� x) is precisely 0.01, so thevalue 84 is used

since P(X� 84) is closest to, but less than, 0.01. The conclusion would therefore be:

. Do not reject H0 if the number nonconforming is greater than 84.

. Reject H0 if the number nonconforming is less than or equal to 84.

It was established that there were 80 nonconforming lenses in the batch. Since this is less than

84, the conclusion reached was to reject the null hypothesis at the significance level of

a¼ 0.01¼ 1%.

Suppose now that change of supplier had actually led to a reduction in the proportion of

nonconforming lenses from 0.045 to 0.030. What is the probability that, once the noncon-

forming lenses had been counted in a batch of 2400, the conclusion reached – to reject H0

in favour of H1 – will be the correct one? Again Calc>Probability Distributions>
Binomial. . . provides the answer – see Panel 7.6.

Cumulative Distribution Function

Binomial with n = 2400 and p = 0.045

x P( X <= x )

80 0.0024365

Panel 7.4 Probability that sample includes 80 or fewer nonconforming lenses.

Inverse Cumulative Distribution Function

Binomial with n = 2400 and p = 0.045

x P( X <= x ) x P( X <= x )

84 0.0085010 85 0.0112890

Panel 7.5 Determining the cut-off number of nonconforming lenses.
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Thus there is a probability of 0.93 (to two decimal places) of the test of hypotheses

providing the evidence of a reduction from 0.045 to 0.030 in the population proportion of

nonconforming lenses. This probability is the power of the statistical test to detect the change

from a population proportion of 0.045 to a population proportion of 0.030. The other side of

the coin is that there is probability 1 � 0.93¼ 0.07 of the experiment failing to provide

evidence of the reduction, i.e. there is probabilityb¼ 0.07 of committing a Type II error with a

test based on a sample of 2400 lenses.

Figure 7.3 shows a plot of the power of the test against the population proportion

nonconforming after the process change. Note that the larger the drop in the proportion the

more likely it is that the test will provide evidence of the change. For example, were the

population proportion of nonconforming lenses to drop by 0.02, so that the population

proportion after the process changewas 0.025, then the probability is 0.999 that the conclusion

would be to reject the null hypothesis, i.e. it is virtually certain that the test would lead to

making the correct decision.

In discussing the above two tests of hypotheses the statistical models used employed

specific probability distributions, the normal distribution in the case of the DTNs and the

binomial distribution in the case of the lens coating process. Other tests of hypotheses are

availablewhich do not require use of specific probability distributions. These are referred to as

distribution-free or nonparametric tests. Specific cases of such tests will be introduced later in

the chapter.

Cumulative Distribution Function

Binomial with n = 2400 and p = 0.03

x P( X <= x )
84 0.929871

Panel 7.6 Probability of rejecting null hypothesis when new population proportion is 0.030.

Figure 7.3 Power curve for the statistical test.
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Both the above tests of hypotheses were performed from first principles. In the next

section we will see how Minitab can be used to streamline performance of the tests.

7.2 Tests and confidence intervals for the comparison

of means and proportions with a standard

7.2.1 Tests based on the standard normal distribution – z-tests

Consider again the thrombolytic treatment example and the DTN data in Table 7.1 and

worksheet DTNTime.MTW. The standard DTN could be thought of as the mean m¼ 19

minutes of the normal distribution of DTNs. When the data for the 25 patients treated with the

specialist nurses available are to hand wewish to compare these data with the standard via the

formal test of the hypotheses:

H0 : m ¼ 19; H1 : m < 19:

Recall, too, that the variability was assumed to remain unchanged, with the standard

deviation being 6 minutes. The dialog involved in performing the test in Minitab using

Stat>Basic Statistics> 1-Sample Z. . . is shown in Figure 7.4.

Here the sample of DTNs is available in column C1. Standard deviation: 6 is specified

and, with Perform hypothesis test checked, Hypothesized mean: 19 indicates the null

hypothesis. UnderOptions. . . the alternative hypothesis is specified by use of the scroll arrow

to select less than in the Alternative: window. Finally, under Graphs. . . one can select to

display the data in the form either of a histogram, an individual values plot or a boxplot; in this

case the Histogram of data option was selected. The Session Window output is shown in

Panel 7.7 and the graphical output is shown in Figure 7.5.

The Session window output includes the following:

. a statement of the hypotheses under test in the first line;

. the value of the standard deviation assumed to apply (6 in this case);

. the sample size, sample mean and sample standard deviation;

Figure 7.4 Dialog for performing a one-sample z-test.
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. the standard error of the mean which is the standard deviation of the sample mean given

by s �X ¼ s=
ffiffiffi

n
p ¼ 6=

ffiffiffiffiffi

25
p

¼ 1:2;

. a 95% upper bound of 18.25 which will be explained later in this section;

. a Z-value of �2.27, which is explained in Box 7.3;

. the P-value of 0.012 for the test.

The P-value of 0.012 was calculated in the previous section in the ‘grass-roots’ version of the

test. Since it is less than 0.05 one can immediately conclude that the null hypothesisH0 :m¼ 19

would be rejected at the a¼ 0.05 significance level in favour of the alternative hypothesis

H1 :m< 19. In other words, the experiment provides evidence of a significant reduction in the

population mean DTN at the 5% level of significance.

In the previous section it was noted that the cut-off between acceptance and rejection of

the null hypothesis, when using the 5% significance level, occurs at the value of 17.026 2 for

the sample mean. The value of Z corresponding to 17.026 2 is �1.64. In terms of the

standardized variable Z the conclusion would therefore be:

One-Sample Z: DTNTime

Test of mu = 19 vs < 19

The assumed standard deviation = 6

95% Upper

Variable N Mean StDev SE Mean Bound Z P

DTNTime 25 16.28 6.83 1.20 18.25 -2.27 0.012

Panel 7.7 Session window output for z-test.

Figure 7.5 Histogram of door to needle times with z-test annotation.
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. Do not reject H0 if Z is greater than � 1.64.

. Reject the null hypothesis H0 if Z is less than or equal to � 1.64.

From the data it has been established that the value of Z corresponding to the sample mean of

16.28 was � 2.27. Since this is less than � 1.64 the conclusion reached would be to reject the

null hypothesis at the significance level of a¼ 0.05.

Prior to the availability of statistical software packages, such as Minitab, tests of this type

were typically conducted by calculating Z using the formula

Z ¼
�Y �m

s=
ffiffiffi

n
p :

The conclusion regarding acceptance or rejection of the null hypothesis would then be

made by reference to tables of critical values of Z, taking into account the significance level of

interest and the nature of the alternative hypothesis. (The creation of such a table was set as

Exercise 7 in Chapter 4.) The key involvement of Z in such tests of hypotheses involving a

single sample gives rise to the nomenclature one-sample Z-test.

Finally, using the formula for Zwe can answer the question: ‘What null hypotheses would

be acceptable at the 5% significance level?’ The mathematical manipulations are given in

Box 7.4 for the interested reader. Others may skip over the mathematics to the interpretation

that follows.

If V is a random variable with mean mV and standard deviation sV , then the random

variable Z ¼ ðV �mVÞ=sV is the standardized variable which has mean 0 and standard

deviation 1. IfV is normally distributed then so isZ. In the case of door to needle time, Y, in

this example the sample mean, �Y , is, under the null hypothesis, normally distributed with

mean 19 and standard deviation 1.2, so the corresponding standardised variable is given

by Z ¼ ð�Y � 19Þ=1:2. The mean of the sample of 25 times was �y ¼ 16:28 with corre-

sponding z ¼ ð16:28� 19Þ=1:2 ¼ � 2:27 This is the value of Z given in the Session

window output.

Box 7.3 Calculation of the z-statistic given in Session window output.

For the null hypothesis to be accepted we require

Z > � 1:64 )
�Y �m
s
ffiffiffi

n
p

> � 1:64

) 16:28�m

1:2
> � 1:64

) 16:28�m > � 1:64� 1:2
) m < 16:28þ 1:968
) m < 18:25:

Box 7.4 Calculation of range of acceptable population means.
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The value of 18.25 is given in the Session window output as the 95% upper bound. In

applied statistics 95% confidence level goes hand in hand with the 5% significance level. Had

the null hypothesis been H0 :m¼ 17, with alternative H1 :m< 17, then one can deduce

immediately that the null hypothesis would not be rejected at the 5% level of significance

since 17 is less than 18.25, the 95% confidence upper bound. Similarly, H0 :m¼ 19, with

alternative H1 :m< 19 would be rejected at the 5% level of significance (as we have already

seen) since 19 is greater than 18.25. Thus one could report the results of the experiment by

stating that ‘on the basis of the data collected, the population mean DTN was estimated to be

16.28minutes and that, with 95%confidence, it could be claimed that the true populationmean

was at most 18.25 minutes’.

The histogram created as the graphical output in Figure 7.5 is annotated with a point

labelled H0 indicating the value 19 specified in the null hypothesis. The arrowed line segment

has a tick mark labelled �X on it, indicating the sample mean. The segment extends from the

value 18.25 downwards and indicates the 95% confidence interval for the population mean

following the process change. The fact that the point corresponding to H0 does not lie on the

line segment indicates rejection of the null hypothesis H0 :m¼ 19 in favour of the alternative

H1 :m< 19 at the 5% level of significance.

Had the data been presented in summary form, i.e. that a sample of 25 times following the

process change had mean 16.28, then the test could still be performed using Stat>Basic

Statistics> 1-Sample Z. . . by checking Summarized data and entering Sample size: 25,

Mean: 16.28 and Standard deviation: 6. With Perform hypothesis test checked, Hypoth-

esized mean: 19 indicates the null hypothesis. UnderOptions. . . the alternative hypothesis is

specified by use of the scroll arrow to select less than in theAlternative:window.Without the

raw data no graphical output is possible. The reader is invited to check that the output in

Panel 7.8 results and that it is identical to that obtained by performing the test using the column

of rawdata, except that it is not possible to deduce the standard deviation of the sample from the

summary information provided to the software.

As a second example, consider a type of glass bottle for which burst strength (psi) could be

adequately modelled by the normal distribution with mean 480 and standard deviation 64.

During a Six Sigma project with the aim of increasing the burst strength of the bottles, a

new glass formulation was used in a large production run of the bottle. The burst

strength data for a random sample from the batch are given in Table 7.3 and also as a single

column in the worksheet Burst_Strength.MTW. Does the data provide evidence of increased

mean burst strength?

One-Sample Z

* NOTE * Graphs cannot be made with summarized data.

Test of mu = 19 vs < 19

The assumed standard deviation = 6

95% Upper

N Mean SE Mean Bound Z P

25 16.28 1.20 18.25 -2.27 0.012

Panel 7.8 Session window output for z-test using summarized data.
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Here the hypotheses are:

H0 : m ¼ 480; H1 : m > 480:

Proceeding as in the previous case, use of Stat>Basic Statistics> 1-Sample Z. . . is

required with the Standard deviation of 64 specified, Perform hypothesis test checked and

Hypothesized mean: 480 entered. Under Options. . . the alternative hypothesis is specified

by use of the scroll arrow to select greater than in the Alternative: window. UnderGraphs:

theBoxplot of data optionwas selected. The Sessionwindow output is shown in Panel 7.9 and

the graphical output is shown in Figure 7.6.

Table 7.3 Burst strength (psi) for a sample of 50 bottles.

535 476 439 541 526 523 465 476 468 524

449 444 431 582 580 447 503 498 488 467

545 528 538 570 453 700 535 454 403 498

573 558 442 490 503 476 609 483 484 443

535 476 439 541 526 523 465 476 468 524

One-Sample Z: Burst Strength

Test of mu = 480 vs > 480

The assumed standard deviation = 64

95% Lower

Variable N Mean StDev SE Mean Bound Z P

Burst Strength 50 504.08 55.55 9.05 489.19 2.66 0.004

Panel 7.9 Session window output for z-test on burst strength data.

Figure 7.6 Boxplot of burst strength data with z-test annotation.
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The conclusion would be that the data provide evidence that the new glass formulation has

led to an increase in population mean burst strength – the null hypothesis H0 :m¼ 480 being

rejected in favour of the alternativeH1 :m> 480 at the significance levela¼ 0.01. TheP-value

for the test is 0.004. The data also enable one to state with 95% confidence that, with the new

glass formulation, the population mean burst strength will be at least 489 psi. (Of course a

decision as towhether or not to change to the new glass formulation would be likely to involve

cost and other considerations.)

As a third example, consider the following scenario. Before revising staffing arrangements

at a busy city branch, a major bank determined that the service time (seconds) for business

customers could be adequately modelled by a normal distribution withmean 453 and standard

deviation 38 seconds. Following implementation of the revision, the mean service time for a

random sample of 62 business customers was 447 seconds. The data are stored in Service.

MTW. Do these data provide any evidence of a change (either an increase or a decrease) in the

mean service time for business customers?

Proceeding as in the previous two cases, but withAlternative: set to not equal, we can test

the null hypothesis H0 :m¼ 453 against the alternative hypothesis H1 :m 6¼ 453. The third

available graphical option of an Individual value plot (dotplot) was selected in this case.

The Session window output is shown in Panel 7.10 and the graphical output in Figure 7.7.

One-Sample Z: Service Time

Test of mu = 453 vs not = 453

The assumed standard deviation = 38

Variable N Mean StDev SE Mean 95% CI Z P

Service Time 62 447.00 36.54 4.83 (437.54, 456.46) -1.24 0.214

Panel 7.10 Session window output for z-test on service time data.

Figure 7.7 Individual value display of service time data with z-test annotation.
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(On obtaining the graph the author double-clicked on a data point to access theEdit Individual

Symbolsmenu.Under the Identical Points tab the Jitter optionwas selected. On clickingOK

the display shown was obtained. Use of jitter reveals overlapping points.)

The conclusion would be that the data provide no evidence that the revised staffing

arrangements have led to a change in population mean service time since the P-value for the

test is 0.214. Since the P-value exceeds 0.05 the null hypothesis cannot be rejected at the

significance level a¼ 0.05. The data also enable one to state with 95% confidence that,

following the revision of staffing arrangements, the population mean service time lies in the

interval 438 to 456 seconds, rounded to the nearest integer. This 95% confidence interval (CI)

for the population mean service time has been taken from the Session window output and

rounded. The fact that the 95% confidence interval includes the mean of 453 specified in

the null hypothesis indicates that H0 :m¼ 453 cannot be rejected at the 5% level of

significance. This is evident in the graphical display also, as the point representing the value

of the population mean specified in the null hypothesis lies on the line segment that represents

the 95% confidence interval.

The first and second examples involved one-tailed tests. In terms of z, the criterion for

rejection of the null hypothesis at the 5% level of significancewas z less than or equal to � 1.64

in the first case, z greater than or equal to 1.64 in the second case, and in the third case either z

less than �1.96 or z greater than 1.96. (The fact that 1.96 rounds to 2.00 may explain why the

5% level is the most widely used significance level in applied statistics – for a null hypothesis

to be rejected at the 5% level in a two-tailed z-test, it is easy to remember that zmust exceed 2

in magnitude.)

The test could have been carried out in the third case by obtaining the values of the mean

service time for a random sample of 62 customers, on the assumption that the null hypothesis is

true, that correspond to the z-values of �1.96 and 1.96. The values are 443.5 and 462.5,

respectively. The situation is illustrated in Figure 7.8. Values of the sample mean either

less than 443.5 or greater than 462.5 comprise the critical region for the two-tailed test here.

Figure 7.8 Critical region for a two-tailed test.
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The sample mean obtained was 447.0, which is not in the critical region – hence the decision

not to reject the null hypothesis at the 5% level of significance. Thus there is no evidence from

the data to suggest that the revised staffing arrangements have had any impact on themean time

taken to serve business customers.

7.2.1.1 Some comments on tests of hypotheses and P-values

Vickers (2010) states that ‘the p-value is the probability that the data would be at least as

extreme as those observed, if the null hypothesis were true’. His book givesmuch sound advice

on hypothesis testing via both light-hearted contexts and real applications. Ronald Fisher, who

played a key role in the development of statistical inference, wrote on P-values in Statistical

Methods for Research Workers, first published in 1925: ‘We shall not often be astray if we

draw a conventional line at 0.05’ (Fisher, 1954, p. 80) This comment will undoubtedly have

contributed to the level of significance 0.05 becoming the most widely used in applied

statistics.

Statistical tests of hypothesis are controversial. Sterne and Davey Smith (2001, p. 226)

make the following summary points:

P values . . . measure the strength of the evidence against the null hypothesis; the

smaller the P value, the stronger the evidence against the null hypothesis.

An arbitrary division of results, into ‘significant’ or ‘nonsignificant’ according to

the P value, was not the intention of the founders of statistical inference.

AP value of 0.05 need not provide strong evidence against the null hypothesis, but

it is reasonable to say that P< 0.001 does. In the results . . . the precise P value

should be presented, without reference to arbitrary thresholds.

Confidence intervals should always be included in reporting the results of

statistical analyses, with emphasis on the implications of the ranges of values

in the intervals.

The value of z quoted in the output is known as the test statistic. Montgomery (2009, p. 117)

comments:

It is customary to call the test statistic (and the data) significant when the null

hypothesis H0 is rejected; therefore, we may think of the P-value as the smallest

level a at which the data are significant. Once the P-value is known, the decision

maker can determine for himself or herself how significant the data arewithout the

data analyst formally imposing a pre-selected level of significance.

This author strongly recommends that a display of the data should be incorporated into the

reporting whenever it is possible to do so.

7.2.1.2 Some comments on confidence intervals

In order to aid the reader’s understanding of confidence intervals a series of 80 random samples

of size 62was generated from theN(453,382) distribution usingMinitab. (The sample size and

parameters chosen relate to the earlier example on customer service time in a bank, but one
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could choose arbitrary values.) On the assumption that the standard deviation of the population

was known to be 38, two-sided 95% confidence intervals for the population mean were

computed and displayed using the 1-Sample Z. . . facility in Minitab – see Figure 7.9.

The reference line indicates the true populationmean of 453. The first vertical line segment

represents the 95% confidence interval based on the first simulated sample which was

(440.1,459.0) and captures within it the true population mean of 453 – capture is indicated

by the line segment crossing the reference line. The 63rd line segment represents the 95%

confidence interval based on the 63rd sample which was (453.7, 472.6) and fails to capture

within it the true population mean of 453 – failure to capture is indicated by the segment not

crossing the reference line. Of the 80 confidence intervals, the 63rd, 74th and 79th fail to

‘capture’ the true population mean. This corresponds to 77 captures from 80 attempts,

which is equivalent to 96.2%. This capture rate is close to the long-term capture rate for

such intervals of 95%.

The formula for calculating a 95% two-sided confidence interval for themeanof a normally

distributed population, with known standard deviation s, based on a sample of size n, is

�x� 1:96
s
ffiffiffi

n
p :

Suppose that a machine for filling jars with instant coffee granules delivers amounts that

are normally distributed with standard deviation 0.3 g. The process manager wishes to know

how big a sample of jars is required in order to estimate, with 95% confidence, the mean

amount delivered to within 0.1 g of its true value. This means that we require

1:96
0:3
ffiffiffi

n
p < 0:1 ) n >

1:96� 0:3

0:1

� �2

¼ 34:5:

Thus a random sample of at least 35 jars would be required.

Figure 7.9 Display of 95% confidence intervals from simulated samples.
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The value 0.1 gmay be referred to as themargin of error,E. In general, in order to estimate,

with 95% confidence, the mean of a population to within E of its true value requires a sample

size n of at least 3:84s2=E2. If the standard deviation, s, of the population is unknown then an

estimate of the standard deviation from a pilot sample may be used in the calculation. If the

pilot sample is small then caution should be exercised in applying the formula. For estimation

with 99%confidence, the factor of 3.84 is replaced by 6.63 in the above formula, and for 99.9%

confidence it is replaced by 10.83. A point to note is that halving themargin of error quadruples

the sample size required.

7.2.2 Tests based on the Student t-distribution – t-tests

At the core of the tests we have considered so far in this section is the test statistic given by

z ¼ �y�m

s=
ffiffiffi

n
p :

In each of the examples considered it was assumed that process variability was unaffected

by the process changes so that the standard deviation, s, was known.

Hence the tests are called z-tests.

What do we do if this assumption is suspect? If we have modified a process. might not the

changesmade affect variability aswell as location?Anatural thing to do is to calculate the test-

statistic value:

t ¼ �y�m

s=
ffiffiffi

n
p

This formula may be obtained from the previous one by using the sample standard

deviation s in place of the population standard deviation, s. If the underlying random variable

Y has a normal distribution then the random variable T has a Student’s t-distribution. The

distribution is named in honour of William S. Gosset who was appointed to a post in

the Guinness brewery in Dublin in 1899 and made a major contribution to the development

of applied statistics. He developed the t-test to deal with small samples used for quality control

in brewing.Hewrote under the pseudonym‘Student’ because his companyhad a policy against

work done for the company beingmade public. A sample of n values has n¼ n � 1 degrees of

freedom. (The Greek letter n is nu.) There is a separate t-distribution for each number of

degrees of freedom 1, 2, 3, . . ..

As an example suppose that initially assembly of P87 modules took on average 48.0

minutes with standard deviation 3.7 minutes. At a later date the following sample of eight

assembly times was obtained:

46 48 45 48 46 47 43 48:

Wewish to evaluate the evidence from this sample of assembly times for a reduction in the

population mean assembly time.

In order to perform the t-test of the null hypothesis H0 :m¼ 48 against the alternative

hypothesis H1 :m< 48, first set up the data in a column named Assembly time. Use of

Stat>Basic Statistics> 1-Sample t. . . is required with ‘Assembly time’ selected under
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Samples in columns:, Perform hypothesis test checked, Hypothesized mean: 48

entered and less than specified viaOptions. . . under Alternative:. With such a small sample

an Individual value plot, rather than a histogram or boxplot, is recommended under

Graphs. . .. The Session window output is shown in Panel 7.11 and the graphical output in

Figure 7.10.

The output follows the same pattern as for a z-test. A statement of the hypotheses of interest

is followed by summary statistics for the sample. Finally, the confidence interval, test statistic

and P-value are given. The data provide evidence via the t-test of a reduction in the population

mean assembly time, the null hypothesis that the mean is 48 minutes being rejected at the 5%

significance level (P-value¼ 0.018). A point estimate of the new population mean is 46.4

minutes and, with 95% confidence, it can be stated that the new population mean is at most

47.6 minutes. Note how, in Figure 7.10, the point representing the value of the mean specified

in the null hypothesis does not lie on the line segment that represents the 95% confidence

interval. This provides visual confirmation of the rejection of the null hypothesis at the 5%

significance level.

The t-test requires the random variable of interest to be normally distributed. The normal

probability plot in Figure 7.11 provides no evidence of nonnormality of the data

(P-value¼ 0.237).

One-Sample T: Assembly time

Test of mu = 48 vs < 48

95% Upper

Variable N Mean StDev SE Mean Bound T P

Assembly time 8 46.375 1.768 0.625 47.559 -2.60 0.018

Panel 7.11 Session window output for t-test on assembly time data.

Figure 7.10 Individual value display of assembly time with t-test annotation.
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If the normality test provided strong evidence of nonnormality of the distribution of the

random variable of interest, then one possible approach would be to seek an appropriate

transformation of the data. Box–Cox transformation may be explored via Stat>Control

Charts>Box-Cox Transformation. . .. An alternative approach would be to perform a

nonparametric test that will be introduced later in the chapter.

The probability density functions for the standard normal distribution, i.e. the N(0,1)

distribution, and the t distribution with parameter n¼ 7 degrees of freedom are displayed in

Figure 7.12. One of Gosset’s major contributions was the creation of tables of critical values of

to enable tests such as the above to be performed. In Panel 7.12 the critical values for the above

Figure 7.11 Probability plot of assembly time data.

Figure 7.12 Probability density functions for the N(0,1) and t7 distributions.
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test at both the 5% and 1% levels of significance are displayed, i.e. �1.89 and �3.00

respectively, rounded to two decimal places. The calculated value of the test statistic, t, was

given as �2.60 in Panel 7.11. It follows that, since �2.60 is less than �1.89, the null

hypothesis would be rejected at the 5% level. Since �2.60 is greater than �3.00, the null

hypothesis cannot be rejected at the 1% level. This also indicates that the P-value must lie

between 0.05 and 0.01. Minitab provided us with the precise P-value of 0.018.

7.2.2.1 Power and sample size

Recall that, in the DTN example, the population mean time before the process change was 19

minutes with population standard deviation 6 minutes. Suppose that the project team decided

that, were the population mean time to decrease by 3 minutes due to the introduction of the

specialist nurses, then they would like to be 95% certain to detect the decrease, using a

significance level ofa¼ 0.05. Thus theywould be specifying power 0.95 for the z-test to detect

the change from population mean 19 to population mean 16. The question to be answered is

therefore that of how big a sample should be taken. Minitab provides the answer via

Stat>Power and Sample Size> 1-Sample Z. . .. The required dialog is shown in

Figure 7.13.

The change of interest, from 19 to 16, is specified as Differences: �3; the population

standard deviation is assumed to remain unchanged so Standard deviation: 6 is entered. The

Session window output is shown in the Panel 7.13. In addition, a power curve similar to that

displayed in Figure 7.2 is created by default.

Inverse Cumulative Distribution Function

Student's t distribution with 7 DF

P( X <= x ) x

0.05 -1.89458

Student's t distribution with 7 DF

P( X <= x ) x

0.01 -2.99795

Panel 7.12 Critical values of t with 7 degrees of freedom.

Figure 7.13 Dialog for sample size calculation.
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Panel 7.13 shows that the required sample size is 44 patients. (Note the actual power is

0.953 –Minitab computes the lowest sample size that gives power greater than the target power

specified by the user.) Minitab also provides power and sample size calculations for t-tests.

An exercise will be provided.

7.2.3 Tests for proportions

In the lens coating example the nonconformance rate was 4.5% prior to the introduction of the

new supplier. In a trial run with the coating fluid from the new supplier there were 80

nonconforming lenses in a batch of 2400. Here the test is of null hypothesis H0 : p¼ 0.045

versus the alternative hypothesis H1 : p< 0.045. To perform the test directly via Minitab, use

Stat>Basic Statistics> 1 Proportion. . . with the dialog shown in Figure 7.14.

The Session window output is given in Panel 7.14. The P-value of 0.002 was obtained in

Section 7.1 using grass-roots computation and the binomial distribution – see Panel 7.4. Thus

the data provide evidence of a reduction in the proportion of nonconforming lenses at the 1%

significance level since theP-value is less than 0.01. The estimated proportion nonconforming

following the process change is 3.3%. The process owner can be 95% confident that the

proportion nonconforming is at worst 4.0% (the upper bound expressed as a percentage and

rounded to one decimal place) following the process change. Of course a decision on whether

or not to continue with the new supplier would typically involve consideration of the costs

involved.

Power and Sample Size

1-Sample Z Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Assumed standard deviation = 6

Sample Target

Difference Size Power Actual Power

-3 44 0.95 0.952715

Panel 7.13 Session Window output for z-test on Burst Strength data.

Figure 7.14 Dialog for testing a proportion.
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Suppose that the process team had wished to detect a reduction in the proportion

of nonconforming lenses from 4.5% to 3.0% with power 0.99, using a significance level of

0.01. Use of Stat>Power and Sample Size> 1 Proportion. . . with the dialog shown in

Figure 7.15 provides the sample size required in the Session window output shown in

Panel 7.15. In addition, a power curve similar to that displayed in Figure 7.3 is created

by default. The size of sample required is 3435. Thus in order to ensure a probability of

0.99 of detecting a reduction in the proportion of nonconforming lenses from 4.5% to

3.0%, using a significance level of 0.01, the process team would require a sample size of

the order of 3500.

Test and CI for One Proportion

Test of p = 0.045 vs p < 0.045

95% Upper Exact

Sample X N Sample p Bound P-Value

1 80 2400 0.033333 0.040008 0.002

Panel 7.14 Session window output for test of proportion nonconforming.

Figure 7.15 Dialog for sample size calculation.

Power and Sample Size

Test for One Proportion

Testing p = 0.045 (versus < 0.045)

Alpha = 0.01

Sample Target

Comparison p Size Power Actual Power

0.03 3435 0.99 0.990004

Panel 7.15 Session window output for sample size computation.
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7.2.4 Nonparametric sign and Wilcoxon tests

Following alterations to a checkout facility at a supermarket, a random sample of customers

was observed and the time theywaited for service recorded. The data are displayed in Table 7.4

and available in Wait.MTW.

Prior to the alterations extensive monitoring had shown that the median waiting time was

120 seconds. For the symmetrical normal distribution the mean and median are identical, so

were we to evaluate the evidence for a reduction in the median following the changes

by performing a t-test of null hypothesis H0 :m¼ 120 versus the alternative hypothesis

H1 :m< 120 then the output in Panel 7.16 would be obtained from Minitab.

With a P-value of 0.212 there would appear to be no evidence of a reduction in the mean,

and by implication, in the median. However, a normal probability plot of the data provides

strong evidence of the distribution of waiting time being nonnormal. As an alternative to

seeking a suitable transformation of waiting time one may proceed as follows. Order the data

and record a negative sign if an observed value is less than 120; record a positive sign if an

observed value is greater than 120. (Any values of exactly 120 would be excluded from the

analysis.) The results are shown in Table 7.5.

By definition, the probability that an observed value is less than themedian of a population is

0.5; likewise, theprobability that it isgreater thanthemedianofthepopulationis0.5.Fortheabove

datawehaveobservedavalue less thanthehypothesizedmedianof120for12observationsfroma

total of 15 observations (corresponding to the 12 negative signs from a total of 15 signs). We

therefore ask what is the probability of observing this pattern, or a more extreme one. This is

equivalent to askingwhat is the probability of obtaining 12 ormore tails from15 tosses of a coin.

Consider therefore the random variable X having the B(15, 0.5) distribution. We require

Table 7.4 Waiting time (seconds) data.

471 36 55 185 88

188 58 72 18 47

42 34 41 67 28

One-Sample T: Wait

Test of mu = 120 vs < 120

95%

Upper

Variable N Mean StDev SE Mean Bound T P

Wait 15 95.3333 115.9136 29.9288 148.0471 -0.82 0.212

Panel 7.16 Session window output for t-test on waiting time data.

Table 7.5 Coded data for waiting time.

Wait 18 28 34 36 41 42 47 55 58 67 72 88 185 188 471

Sign � � � � � � � � � � � � þ þ þ
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PðX � 12Þ ¼ 1�PðX � 11Þ. Use of Calc>Probability Distributions>Binomial. . . yields

the result in Panel 7.17. Hence, PðX � 12Þ ¼ 1�PðX � 11Þ ¼ 1� 0:982 422 ¼ 0:017 578.
Since thisprobability is less than0.05wehaveevidenceofa reduction in themedianwaiting time.

This testofhypotheseshasmadenoappeal toanyparticularprobabilitydistributionof thewaiting

time. It is known as the sign test and is an example of a distribution-free or nonparametric test.

Use of Stat>Nonparametrics> 1-Sample Sign. . . enables the test to be performed

directly. The completed dialog is shown in Figure 7.16. The Sessionwindowoutput is shown in

Panel 7.18. The output includes a statement of the hypotheses under test together with counts

of the numbers of observations in the sample that are less than, equal to and greater than the

Cumulative Distribution Function

Binomial with n = 15 and p = 0.5

x P( X <= x )

11 0.982422

Panel 7.17 Calculation of probability of 11, or fewer, þ signs.

Figure 7.16 Dialog for sign test.

Sign Test for Median: Wait

Sign test of median = 120.0 versus < 120.0

N Below Equal Above P Median

Wait 15 12 0 3 0.0176 55.00

Panel 7.18 Session window output for sign test.
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median specified in the null hypothesis. The P-value, computed as above using the binomial

distribution, and the median of the sample are also given. In situations where observations are

equal to the median specified in the null hypothesis these are discounted from the calculations

of the P-value for the test.

The sign test procedure in Minitab offers as default the option to obtain a two-sided

confidence interval for the median instead of performing a test of hypotheses. The Session

window output for the waiting time data is shown in Panel 7.19. The key element is the 95%

confidence interval (37.87, 82.02) for the population median waiting time following the

alterations to the checkout facility. The fact that this interval does not include 120 formally

provides evidence at the 5% level of significance of a change in the populationmedian result of

the alterations. (The reader will recall that 95% confidence intervals go hand in hand with 5%

significance.)

Another nonparametric test that may be used in the type of scenario discussed in this

chapter, where comparison is beingmadewith a standard, is the one-sampleWilcoxon signed-

rank test. With Stat>Nonparametrics> 1-Sample Wilcoxon. . . one can test hypotheses

concerning the median or obtain the corresponding point estimate and confidence interval. As

with the sign test no appeal is made to any particular underlying distribution for the random

variable of interest, but the assumption that the data constitute a random sample from a

continuous, symmetric distribution is required. The reader is invited to verify that this test

yields a P-value of 0.035 so the conclusion, at the 5% level of significance, is the same as that

from the sign test. The median of the sample of 15 values of waiting time is 55 seconds. The

output from theWilcoxon test includes an estimate of 58.75 for the populationmedian.Aswith

the sign test, the default output from the Wilcoxon procedure is computation of a two-sided

95% confidence interval for the population median.

In all the scenarios discussed in this section we have been concerned with processes as

depicted in Figure 1.3. Typically there has been a well-established current parameter for a

process performancemeasure, Y, of interest. The performancemeasure has been usually either

a mean or a proportion. The author has chosen to refer to the current level of performance as a

standard in the heading for section 7.2. The methods introduced are useful for assessing the

impact, if any, of a change to an input, X, or factor on Y. In the next section we will look at

techniques which can be applied in situations where two choices are available for the levels of

the factor, e.g. where wewish to compare two processes for dealing with the administration of

thrombolytic drugs in a hospital accident and emergency department or to compare two

potential suppliers of lens coating fluid where there has are no well-established current

parameters for the process performance measure, Y, of interest.

Sign CI: Wait

Sign confidence interval for median

Confidence

Achieved Interval

N Median Confidence Lower Upper Position

Wait 15 55.00 0.8815 41.00 72.00 5

0.9500 37.87 82.02 NLI

0.9648 36.00 88.00 4

Panel 7.19 Session window output giving confidence interval for median.
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7.3 Tests and confidence intervals for the comparison

of two means or two proportions

7.3.1 Two-sample t-tests

An assembly operation requires a 6-week training period for a new employee to reach

maximum efficiency. A new method of training was proposed and an experiment was carried

out to compare the new method with the standard method. A group of 18 new employees was

split into two groups at random. Each group was trained for 6 weeks, one group using the

standard method and the other the new method. The time (in minutes) required for each

employee to assemble a device was recorded at the end of the training period. Here the X is

the trainingmethod and the Y is the assembly time. The two levels of the factor trainingmethod

are ‘standard’ and ‘new’.

If the data can be considered as independent random samples from normal distributions

with means m1 and m2 with common variance s
2, then a two-sample t-test is available

via Stat>Basic Statistics> 2-Sample t. . .. The completed dialog is shown in Figure 7.17.

The data are available in Assembly.MTW.

Training method is indicated in the text column named Method, with entries New and

Standard. Minitab treats these identifying labels, New and Standard, in alphabetical order so

that it takesm1 to refer to the newmethod andm2 to refer to the standardmethod of training. The

null hypothesis is H0 :m1¼m2, i.e. that there is no difference in mean assembly time for

employees trained by the new and the standard method. The alternative hypothesis is

H1 :m1<m2, since it was of interest to determine whether or not there was evidence that

new training method led to a reduction in the mean assembly time. Thus underOptions. . . less

than has to be selected as Alternative:. Assume equal variances was checked. One should

always choose one of the display options under Graphs. . .. Boxplots of data was selected in

Figure 7.17 Dialog for two-sample t-test.

252 PROCESS EXPERIMENTATION WITH A SINGLE FACTOR



this case. The graphical output is shown in Figure 7.18. The Sessionwindowoutput is shown in

Panel 7.20.

The box sections of the boxplots are of similar length, indicating that the assumption of

equal variances for the two populations is reasonable. Note that the sample means are also

displayed and connected by a line segment. Normal probability plots of the two samples

provide no evidence of nonnormality. Thus a two-sample t-test, with the assumption of equal

variances, would appear to be a sound method of analysis.

The Session window output gives the summary statistics sample size, mean, standard

deviation and standard error of the mean for each sample. The null and alternative hypotheses,

H0 : m1 ¼ m2 and H1 : m1 < m2;

may be written in terms of the difference between the population means as

H0 : m1 �m2 ¼ 0 and H1 : m1 �m2 < 0:

Figure 7.18 Boxplots of assembly time data.

Two-Sample T-Test and CI: Time, Method

Two-sample T for Time

Method N Mean StDev SE Mean

New 9 30.33 4.15 1.4

Standard 9 35.22 4.94 1.6

Difference = mu (New) - mu (Standard)

Estimate for difference: -4.89

95% upper bound for difference: -1.13

T-Test of difference = 0 (vs <): T-Value = -2.27 P-Value = 0.019 DF = 16

Both use Pooled StDev = 4.5659

Panel 7.20 Session window output for two-sample t-test.
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Minitab states the hypotheses in this format in the Session window output in the rather

cryptic shorthand ‘difference¼ 0 (vs<)’. The P-value is 0.019 so, since this is less than 0.05,

there is evidence, at the 5% level of significance, that the population mean assembly time for

operators trained by the new method is lower than that for operators trained by the standard

method. The statement ‘Estimate for difference: �4.89’ indicates that the estimated reduction

in the mean assembly time is 4.89 minutes. The statement ‘95% upper bound for difference:

�1.13’ indicates that, with 95% confidence, it may be stated that the reduction in the mean is

at least 1.13 minutes.

Each sample of nine observations has 8 degrees of freedom, yielding a total of 16 degrees of

freedom, indicated by ‘DF¼ 16’ in the output. A common variance was assumed for the two

populations; the final component of the output is an estimate of this common variance. Further

detail may be found inMontgomery (2009, pp. 132–134) or Hogg and Ledolter (1992, p. 236).

As a second example consider the data in Table 7.6 on determinations of the percentage of

magnesium in a batch of ore by two chemical assay procedures. Performance of a two-sample

t-test of the hypotheses H0 :mA¼mB and H1 :mA 6¼mB, with equal variances for the two

populations of determinations assumed, yields the Sessionwindowoutput shown inPanel 7.21.

The data are available in Magnesium.MTW in two separate columns named A and B. In this

case, as the data appear in separate columns, the Samples in different columns option is

required with First: A and Second: B specified. Assume equal variances was checked.

Individual value plot was selected under Graphs. . ..

The null hypothesisH0 :mA¼mBmay be stated in the form H0 :mA � mB¼ 0, i.e. that the

difference in the population means is zero. The alternative hypothesis H1 :mA 6¼mB may be

stated in the formH1 :mA � mB 6¼ 0, i.e. that the difference in the populationmeans is nonzero.

In the Session window output the hypotheses are indicated by ‘difference¼ 0 (vs not¼)’. The

95% confidence interval (�0.084, 0.884) for mA � mB includes the value 0, which indicates

that the null hypothesis cannot be rejected at the 5% significance level. This conclusion is

confirmed by the P-value of 0.096 being in excess of 0.05. This analysis suggests that both

methods of determining the magnesium content of the ore would yield the same mean value

from many repeated assays.

Table 7.6 Magnesium assay data.

Method A 3.6 3.5 3.4 3.5

Method B 2.6 2.9 3.5 2.7 3.8 3.2 2.8 3.3

Two-Sample T-Test and CI: A, B

Two-sample T for A vs B

N Mean StDev SE Mean

A 4 3.5000 0.0816 0.041

B 8 3.100 0.421 0.15

Difference = mu (A) - mu (B)

Estimate for difference: 0.400

95% CI for difference: (-0.084, 0.884)

T-Test of difference = 0 (vs not =): T-Value = 1.84 P-Value = 0.096 DF = 10

Panel 7.21 Session window output for two-sample t-test – equal variances assumed.
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Although normal probability plots provide no evidence of nonnormality, the individual

value plots of the data displayed in Figure 7.19 cast doubt on the assumption of equal variances,

the spread of themethodA data beingmuch greater than that of themethod B data. Performing

the test again, withAssume equal variances unchecked, yields the Session window output in

Panel 7.22. This version of the test provides evidence, at the 5% level of significance, that the

population means differ for the two methods of assay. Later in the chapter wewill look at tests

of hypotheses concerning variances.

In the examples considered the null hypothesis has been that the two population means are

equal, i.e. that the difference between the population means is 0. It is possible to test the null

hypothesis that the difference between the population means is some value other than 0. For

example, if it is claimed that the use of high octane fuel would improve the fuel consumption of

a type of vehicle by 5mpg on average over that obtained with regular octane fuel then the null

hypothesis would be

H0 : mHigh ¼ mLow þ 5; i:e: mHigh �mLow ¼ 5:

Figure 7.19 Dotplots of magnesium assay data.

Two-Sample T-Test and CI: A, B

Two-sample T for A vs B

N Mean StDev SE Mean

A 4 3.5000 0.0816 0.041

B 8 3.100 0.421 0.15

Difference = mu (A) - mu (B)

Estimate for difference: 0.400000

95% CI for difference: (0.035131, 0.764869)

T-Test of difference = 0 (vs not =): T-Value = 2.59 P-Value = 0.036 DF = 7

Panel 7.22 Session window output for two-sample t-test – equal variances not assumed.
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7.3.2 Tests for two proportions

A manufacturer of laptop computers claims that a higher proportion of his machines will be

operating without any hardware faults after 1 year than those of a competitor. A multinational

company which had purchased a large number of machines from both manufacturers

established that, of a sample of 200 machines from the manufacturer making the claim,

13 had experienced hardware faults during the first year while, of a sample of 150 produced by

the rival manufacturer, 19 had experienced hardware faults during the first year. In order to put

the manufacturer’s claim to the test formally one can proceed as follows.

Let p1 represent the proportion of the manufacturer’s machines that develop hardware

faults during the first year and let p2 represent the proportion for the competitor. Our

hypotheses are as follows:

H0 : p1 ¼ p2 or p1 � p2 ¼ 0;

H1 : p1 < p2 or p1 � p2 < 0:

The test may be performed using Stat>Basic Statistics> 2 Proportions. . .. The dialog

required is shown in Figure 7.20. It is recommended that the pooled estimate of a common

proportion be used for the test (Montgomery, 2009, p. 139; Hogg and Ledolter, 1992, p. 242).

Thus Use pooled estimate of p for test should be checked under Options. . ., together with

Alternative: less than.

The Session Window output is shown in Panel 7.23. A summary of the data provided

is given indicating that, to two decimal places, 6.5% of the manufacturer’s machines

developed hardware faults within a year while 12.7% of the competitor’s machines developed

hardware faults within a year. The P-value of 0.024 provides evidence, at the 5% level of

significance, that the manufacturer’s claim is true. The point estimate of the difference is

6.1% fewer machines developing hardware faults within a year for the manufacturer

compared with the competitor. The confidence interval for the difference indicates that at

least 0.9% fewer of the manufacturer’s machines developed hardware faults within a year

(after rounding –0.008 587 15 to three significant figures, converting to a percentage and

Figure 7.20 Dialog for hypothesis test of two proportions.
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interpreting the negative to imply fewer). The z-value quoted is the test statistic used. The

P-value of 0.037 results from application of the alternative test of the hypotheses provided by

Fisher’s exact test and leads to the same conclusion.

7.3.2.1 Power and sample size

Minitab enables power and sample size calculations to be performed for the two-sample t-test

and for tests concerning two proportions. Suppose that yields from a batch chemical process

are known to be normally distributed and to vary with a standard deviation of the order of 5 kg

under a wide variety of operating conditions. Suppose also that discussions with the process

team reveal that a switch to a new catalyst would be viable from an economic point of view if

the mean yield per batch were to increase by 4 kg. Using Stat>Power and Sample

Size> 2-Sample t-test. . ., once can determine the sample size required to perform a two-

sample t-test of the null hypothesis H0 :mStandard¼mNew, i.e. mStandard � mNew¼ 0, at sig-

nificance level a¼ 0.05 and with power¼ 0.9. The dialog is shown in Figure 7.21. Note that

the difference is specified as � 4 and that the alternative hypothesis isH1 :mStandard<mNew. i.e.

mStandard � mNew< 0, that Less than is checked.

The Session window output is shown in Panel 7.24. The calculated sample size, for each

group, is 28. Thus a sample of 28 yields from the process run with the standard catalyst and a

sample of 28 yields from the process run with the new catalyst would be required.

Test and CI for Two Proportions

Sample X N Sample p

1 13 200 0.065000

2 19 150 0.126667

Difference = p (1) - p (2)

Estimate for difference: -0.0616667

95% upper bound for difference: -0.00858715

Test for difference = 0 (vs < 0): Z = -1.98 P-Value = 0.024

Fisher's exact test: P-Value = 0.037

Panel 7.23 Session window output for test of proportions.

Figure 7.21 Dialog for sample size calculation.
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Suppose that a procurement manager wishes to ascertain whether there is evidence that

the proportion of nonconforming items from supplier A is 2% lower than that obtained

from supplier B, for whom records indicate that about 8% of items are nonconforming.

Suppose that random samples of 500 items from each supplier were to be checked. The

manager would like to know the power of a test performed at the 5% level of significance,

based on these sample sizes, to detect superior performance by supplier A, by 2%, in the

proportion of nonconforming items. Use of Stat>Power and Sample Size> 2 Propor-

tions. . . provides the answer. The dialog is displayed in Figure 7.22.

The Session window output is shown in Panel 7.25. It gives the power of the test to detect

superiority of supplier A, by 2%, as 0.34. Thismeans that the probability of committing a Type

II error is 1 � 0.34¼ 0.66, which indicates that if supplier A is actually operating with a

nonconformance rate of 6%, as compared with 8% for supplier B, then there is probability of

approximately 0.66 that the test would fail to provide evidence of the difference. If you decide

that you would like the power to be 0.9 then, by specifying this value in the dialog shown in

Figure 7.22 and clearing the box Sample sizes:, the procedure returns a sample size of 2786.

The reader is invited to verify this as an exercise. People involved in quality improvement often

fail to realize the size of sample required to formally detect changes or differences of a

magnitude that is of practical significance to their organization.

Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus <)

Calculating power for mean 1 = mean 2 + difference

Alpha = 0.05 Assumed standard deviation = 5

Sample Target

Difference Size Power Actual Power

-4 28 0.9 0.905010

Panel 7.24 Sample size calculation for two-sample t-test.

Figure 7.22 Dialog for power calculation.
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7.3.3 Nonparametric Mann–Whitney test

This nonparametric test provides an alternative to the two-sample t-test. It is based on

allocating ranks to the combined data from both samples. It is also referred to as the two-

sample rank test or the two-sampleWilcoxon rank-sum test. The null hypothesis is that the two

population medians are equal. The assumptions required are that the data are independent

random samples from two distributions that have the same shape.

Consider the data in Table 7.7 on the length of drive (in metres) achieved on striking golf

balls of two different types with a mechanical club device used by a golf manufacturer for

product testing purposes. The manufacturer’s quality manager wishes to know if the data

provide evidence that themedian length of drive achievedwith typeA is less than that achieved

with type B.

The test involves ranking the combined data is shown in Table 7.8. In this case the actual

observed rank sum for type A isW¼ 1 þ 2 þ 3 þ 4 þ 8¼ 18. Had all the type A distances

been less than all the type B distances then the rank sum for type A would have been

Power and Sample Size

Test for Two Proportions

Testing proportion 1 = proportion 2 (versus <)

Calculating power for proportion 2 = 0.08

Alpha = 0.05

Sample

Proportion 1 Size Power

0.06 500 0.342455

The sample size is for each group.

Panel 7.25 Sample size calculation for test of two proportions.

Table 7.7 Distance driven (m) for two types of golf ball.

Type A 181 183 176 221 180

Type B 215 197 229 222 195

Table 7.8 Ranked data for distance.

Distance Type Rank

176 Type A 1

180 Type A 2

181 Type A 3

183 Type A 4

195 Type B 5

197 Type B 6

215 Type B 7

221 Type A 8

222 Type B 9

229 Type B 10
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W¼ 1 þ 2 þ 3 þ 4 þ 5¼ 15. In this case one might feel that there was no need for a formal

test of hypotheses! The reader might wish to take a few moments to convince him/herself that

the possible ranks for type A that would give rise to a rank sum of 18 or less are as follows:

W ¼ 1þ 2þ 3þ 4þ 5 ¼ 15;

W ¼ 1þ 2þ 3þ 4þ 6 ¼ 16;

W ¼ 1þ 2þ 3þ 4þ 7 ¼ 17;

W ¼ 1þ 2þ 3þ 5þ 6 ¼ 17;

W ¼ 1þ 2þ 4þ 5þ 6 ¼ 18;

W ¼ 1þ 2þ 3þ 4þ 8 ¼ 18;

W ¼ 1þ 2þ 3þ 5þ 7 ¼ 18:

Thus there are seven possible rankings for type A yielding a rank sum of 18 or less.

Combinatorial mathematics indicates that there are 252 possible rankings for type A that can

arisewhen two samples of size 5 are tested.Were the null hypothesis true then each ranking for

type A would have equal probability of occurring in the experiment and

PðW � 18Þ ¼ 7=252 ¼ 0:0278. Since this probability is less than 0.05, the null hypothesis

that the medians are equal would be rejected in favour of the alternative hypothesis that the

median for type A is less than that for type B. (The Greek letterh (eta) may be used to denote a

population median.)

With the data for each type in separate columns in a Minitab worksheet the test may be

performed using Stat>Nonparametrics>Mann-Whitney. . . with Alternative: less than

selected. The Session window output is shown in Panel 7.26. It begins by giving the sample

sizes and sample medians by way of data summary. Next follows the point estimate for

the difference in the population medians – note that this is not the difference between the

sample medians. (Interested readers will find details of the estimation procedure employed in

Minitab via the Help facility.) Even though a one-sided alternative hypothesis was specified

here, Minitab gives an approximate two-sided 96.3% confidence interval. (Since it includes

zero we have an indication that the null hypothesis of equal population medians would not be

rejected in favour of the alternative hypothesis of unequal population medians at the

(100 � 96.3)%¼ 3.7% significance level.) Then the rank sumW¼ 18 found earlier is stated.

(If there are two or more equal values in the combined data set then the mean of the associated

ranks is allocated to these equal values. Thus noninteger values ofWmay occur.) Finally, the

null and alternative hypotheses are stated and theP-value is given as 0.0301 rather than 0.0278,

Mann-Whitney Test and CI: A, B

N Median

A 5 181.00

B 5 215.00

Point estimate for ETA1-ETA2 is -21.00

96.3 Percent CI for ETA1-ETA2 is (-48.00,5.98)

W = 18.0

Test of ETA1 = ETA2 vs ETA1 < ETA2 is significant at 0.0301

Panel 7.26 Session Window output for Mann-Whitney test.
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the value calculated above. This is becauseMinitab uses an approximate method, based on the

normal distribution, to compute the probability, and not because the author has made an error!

In discussing the Mann–Whitney test Daly et al. (1995, pp. 372–373) write:

The idea of using ranks instead of the data values is an appealing one. Furthermore,

it has an obvious extension to testing two groups of data when a two-sample t-test

may not be applicable because of lack of normality. The test itself was first

proposed by H.B. Mann and D.R. Whitney in 1947, and modified byWilcoxon; it

turns out to be very nearly as powerful as the two-sample t-test, which tests for

equal means. However it is nevertheless a test of the equality of locations of

the two groups and using it as an alternative to the two-sample t-test is an

approximation often made in practice.

7.4 The analysis of paired data – t-tests and sign tests

A finance company gave a group of employees a test before and after a refresher course on tax

legislation. The scores obtained are displayed in Table 7.9 and are available in the worksheet

TaxTest.MTW.

In order to evaluate the evidence for an improvement in the knowledge of the employees

there are two approaches. The first approach is to form the differences obtained by subtracting,

for each employee, the score obtained before the course from the score obtained after the

course. If the differences may reasonably be regarded as a random sample from the normal

distribution N(m, s2) then the evidence may be evaluated by using a one-sample t-test of the

null hypothesisH0 :m¼ 0 versus the alternative hypothesisH1 :m> 0. Given the two columns

of before and after scores, Calc>Calculator may be used to form the differences and

subsequently Stat>Basic Statistics> 1-Sample t . . . may be used to perform the t-test.

However, Minitab provides Stat>Basic Statistics>Paired t . . . to enable the test to be

performed via a single dialog as displayed in Figure 7.23.

Table 7.9 Test scores before and after refresher course.

Employee

number

Score

before

Score

after

Difference x Sign

1 48 58 10 þ
2 87 91 4 þ
3 82 81 �1 �
4 44 55 11 þ
5 56 60 4 þ
6 71 68 �3 �
7 60 66 6 þ
8 66 82 16 þ
9 84 89 5 þ
10 48 55 7 þ
11 63 73 10 þ
12 48 49 1 þ
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It is important to note the statement in the main dialog box: Paired t evaluates the first

sample minus the second sample. Thus care has to be taken in specifying which column is

deemed to contain the first sample data and which deemed to contain the second sample data

and in specifying the hypothesis of interest in relation to that choice. It could be argued that

the natural thing to do would be to specify the pre-course scores as the first sample; the reason

the author chose the reversewas that positive differences then correspond to improvement. The

alternative hypothesis is specified in the usual way using theOptions. . . subdialog box and, as

ever, creation of some form of display of the data usingGraphs. . . is recommended. Here an

individual value plot was selected. (The author edited the symbols so that an employee whose

score after was higher that his/her score before is represented by an upward pointing triangle

and so that an employeewhose score after was lower that his/her score before is represented by

an downward pointing triangle. To edit all graph symbols click on a symbol, pause and double-

click to access the Edit Individual Symbolsmenu. To edit a single graph symbol click on it,

pause, click again, pause and double-click to access the Edit Individual Symbols menu.)

The individual value plot of the differences in Figure 7.24 indicates that the scores

increased for 10 of the 12 employees but decreased for the remaining two. The fact that the

value of 0, specified under the null hypothesis H0, lies outwith the line segment representing

the one-sided 95% confidence interval for the mean of the population of differences indicates

that the null hypothesis would be rejected in favour of the alternative at the 5% level of

significance.

The Session Window output is shown in Panel 7.27. Summary statistics are given for the

two sets of scores and for the differences. The P-value of 0.002 indicates that the null

hypothesis would be rejected in favour of the alternative at the 1% level of significance.

Rounded to the nearest whole number, the point estimate of themean increase in score is 6 and,

with 95% confidence, it can be stated that the mean increase in score is at least 3 points.

A normal probability plot of the difference data provides no evidence of nonnormality, so the

t-test is an appropriate method of analysis.

Figure 7.23 Dialog for paired t-test.

262 PROCESS EXPERIMENTATION WITH A SINGLE FACTOR



Alternatively, the nonparametric sign test may be used to test the null hypothesis that the

median of the population of differences is 0 against the alternative hypothesis that the median

is greater than 0. The Session window output from this test is shown in Panel 7.28. With

P-value 0.0193 the null hypothesis that themedian population difference is 0would be rejected

in favour of the alternative hypothesis that the median is greater than 0 at the 5% level of

significance. Thus the sign test also provides evidence that the refresher course has improved

the employees’ knowledge of the tax legislation. The sign test is a less powerful test than the

Figure 7.24 Display of differences with t-test annotation.

Paired T-Test and CI: After, Before

Paired T for After - Before

N Mean StDev SE Mean

After 12 68.92 14.20 4.10

Before 12 63.08 15.21 4.39

Difference 12 5.83 5.41 1.56

95% lower bound for mean difference: 3.03

T-Test of mean difference = 0 (vs > 0): T-Value = 3.74 P-Value = 0.002

Panel 7.27 Session window output for paired t-test.

Sign Test for Median: Difference

Sign test of median = 0.00000 versus > 0.00000

N Below Equal Above P Median

Difference 12 2 0 10 0.0193 5.500

Panel 7.28 Session window output for sign test.
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paired t-test. If one is concerned about normality of the distribution of differences then the sign

test is available as a nonparametric, but less powerful, alternative to the paired t-test.

Had one erroneously analysed the data using the two-sample t-test then no evidence of a

significant impact of the refresher course would have been found. This emphasizes the fact

that the two sets of scores do not constitute independent random samples from two

normal populations and also the need for care in the selection of methods for the analysis

of data. Paired experiments of the type discussed here are a special case of the use of

blocking in the design of experiments. This powerful techniquewill be discussed in detail later

in the chapter.

7.5 Experiments with a single factor having more

than two levels

Wewill now look at situations where the factor of interest,X, hasmore than two levels. In some

cases the effects of the factor are fixed. For example, suppose there are only three adhesives

available on themarket thatmay be used to bond components to a substrate in the fabrication of

a particular type of electronic circuit. For an experiment in which bond strength, Y, was

measured for 10 components bonded to substrate with each available adhesive, the factor

adhesivewould be said to be fixed. In some cases the effects of the factor are said to be random.

Were there many adhesives available then, for an experiment in which bond strength, Y, was

measured for 10 components bonded to substrate with each adhesive from a sample of three

adhesives, selected at random from the available adhesives, the factor adhesive would be said

to be random.

In analysing data from fixed effect scenarios, interest centres on testing hypotheses

concerning means and making comparisons between means. Thus in the case of there being

only three adhesives, all involved in the experiment, the questions being addressed would be:

. Is there evidence that the population mean bond strengths differ for the three available

adhesives?

. If the answer to the first question is an affirmative, then what is the extent of the

differences?

In analysing data from random effects scenarios, interest centres on partitioning the variation

observed into components. Thus in the case of there being a random sample of three adhesives

involved in the experiment, the questions being addressed would be:

. Howmuch of the variation observed is attributable to real differences between means in

the population of adhesives from which the three used in the experiment were selected?

. How much of the variation observed is attributable to random variation about these

population means?

7.5.1 Design and analysis of a single-factor experiment

In order to introduce key concepts and techniques data for a fictitious golfer, Lynx Irons,will be

used. Lynx is interested in improving the process of driving a golf ball from the tee at holes
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where she needs to use a driving club in order to achieve maximum distance. She wishes to

determine the effect of ball type on the length of her drives. She will hit a number of drives

with each of a fixed set of ball types she is prepared to use –Exoset, Flyer andGutty (E, F andG

for short).

Coleman et al. (1996, pp. 137–141) refer to requirements of good experimentation

including:

. reliable measurement,

. randomization,

. replication.

Let us assume thatwe can reliablymeasure the response,Y, of interest – the length of drive in

metres. Suppose that it has been decided to incorporate replication by havingLynx hit five balls

of each type. (Were she to hit only a single ball of each type there is a risk that the distance

achieved with one particular type might be atypically low and lead to failure to identify an

opportunity for process improvement.) Finally, let us assume that all balls of a particular type

are absolutely identical – unrealistic, of course, but necessary to make the example tractable.

To achieve randomization the 15 balls could be put into a bag, given a thorough mix and a ball

selected in turn for each drive.Were Lynx asked to hit all five balls of type Efirst, then all five of

type F second and finally all five of type G then, for example, fatigue might lead to lower drive

length for type G than might otherwise be obtained.

Minitabmay also be used to carry out the randomization. Having decided to hit five balls of

each type, this can be achieved by setting up columns as shown in the background in

Figure 7.25. Calc>Make Patterned Data> Simple Set of Numbers. . . and Calc>Make

Figure 7.25 Initial worksheet for golf ball experiment with dialog for randomization.
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Patterned Data>Text Values. . .may be used to set up the first two. (It is a simple matter to

make the required entries via the keyboard, but experience of using the facilities for

creating patterned data is worth having. It should be noted that in creating a column

named Drive no. the entry ‘Drive no.’ is required in the Store patterned data in: window.)

The third will be use to record the length of each drive. The final column may be used to

note any unusual occurrences during the conduct of the experiment or any information that

might be relevant.

To achieve randomization, use may be made of Calc>Random Data> Sample From

Columns. . . via the dialog shown in Figure 7.25. By sampling, without replacement, 15 values

at random from the entries in column 2 (Sample with replacementmust not be checked) and

using the same column to store the results, the original entries in column 2 are rearranged into

random order. (If the reader tries this for her/himself it is unlikely, but possible, that the same

sequence will be obtained as that obtained by the author in Figure 7.26!)

The resulting worksheet may then be stored in a project file and also printed off as a pro

forma for the recording of the length of the 15 drives at the golf range where the experiment is

to be performed. The data are displayed in Figure 7.26 and are available in Types.MTW.

We could analyse these data formally using three two-sample t-tests - one to compare E

with F, one to compare F with G, and a final one to compare G with E.

Had Lynxwished to investigate seven ball types this approachwould have required 21 two-

sample t-tests in total. Apart from the tedium, there is a problem with this approach. When

employing a 5% significance level there is a 5%, or 1 in 20, probability of a Type I error, i.e. of

rejecting a null hypothesis when in fact that hypothesis is true. Thus with seven ball types,

which in reality have identical mean distances for Lynx,wewould expect the t-test approach to

throw up spurious evidence of a significant difference between two of the ball types. We are

now going to look at a single analysis that will seek evidence from the data of a real difference

between ball types as far as mean length for Lynx is concerned. The technique is analysis of

variance (ANOVA).

Figure 7.26 Data from golf ball experiment and dialog for ANOVA.
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The null hypothesis is that the population means are equal and the alternative is that not all

the means are identical:
H0 : mE ¼ mF ¼ mG;

H1 : Not all ms are identical:

The ANOVA can be performed using Stat>ANOVA>One-Way. . ., the ‘one-way’ indi-

cating that there is only a single factor of interest in this experiment. The dialog required is also

displayed in Figure 7.26. The Response: (Y) is length and the Factor: (X) is type of ball. Store

residuals and Store fits have both been checked. The defaultConfidence level: of 95% has been

accepted. In order todisplay thedata Individual valueplotwas selectedunderGraphs. . . together

with Four in one for the Residual plots. Finally under Comparisons. . . Tukey’s, family error

rate: 5 (the default 5%), was selected. The output will now be discussed step by step.

The individual value plot of the data is shown in Figure 7.27. The plot suggests that ball

types F and G are on a par (no pun intended!) as far as length performance for Lynx Irons is

concerned, while E is inferior to both. The triangular symbols denote the mean lengths of the

five drives with each ball type. The author edited the crossed circle symbols obtained by

default. The mean value for both E and G equals an observed value.

The Sessionwindowoutput enables a formal test of the null hypothesis of equal population

means to be tested against the alternative specified above. The relevant section of the output

is presented in Panel 7.29. This section of the output is the ANOVA table. Its construction will

Figure 7.27 Individual value plot of length by type.

One-way ANOVA: Length versus Type

Source DF SS MS F P

Type 2 280.0 140.0 7.30 0.008

Error 12 230.0 19.2

Total 14 510.0

Panel 7.29 ANOVA table for golf ball experiment.
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be explained later in the chapter. The test statistic is the value 7.30 under the heading F and the

associatedP-value of 0.008 is given in the next column. Since theP-value is less than 0.01 null

hypothesis would be rejected in favour of the alternative hypothesis at the 1% level of

significance. Thus the experiment provides strong evidence that Lynx does not achieve the

same mean drive length with the three types of golf ball. In view of the appearance of the

individual value plot, this conclusion is not surprising.

The theory underlying the test requires that the three populations of length, for the three ball

types driven by Lynx, have normal distributions with equal variances. If these requirements are

met and the null hypothesis is true then the test statistic has anF-distribution thatmay be used to

compute the P-value. The distribution is named in honour of Ronald Fisher, a pioneer in

developing the application of statistical methods to experimentation. Since the spreads of the

points in the individual value plot are similar for each ball type, the assumption of equal

variances would appear to be a reasonable one. Some descriptive statistics for length and for

length by type are shown in Panel 7.30. The overall mean length for all 15 drives was 200m.

Were we to examine 95% confidence intervals for all the differences between population

means, based on two-sample t-tests, then wewould encounter a similar problem to that which

would arise were we to compare means using a series of two-sample t-tests. If we require a

statement with 95% confidence for all possible differences between population means then

Tukey’s multiple comparison provides this. The corresponding section of the Session window

output is shown in Panel 7.31. Thus with overall 95% confidence we can state the following:

. The population mean length achieved with type F is greater than that achieved with type

E by 8m, with confidence interval (0.6, 15.4)

. The populationmean length achievedwith type G is greater than that achievedwith type

E by 10m, with confidence interval (2.6, 17.4)

. The populationmean length achievedwith type G is greater than that achievedwith type

F by 2m, with confidence interval (�5.4, 9.4).

The first two confidence intervals do not include 0,while the third does. Thus,with overall 95%

confidence, we can state that there is evidence from the experiment that F is superior to E and

that G is superior to E, as far as the mean length of drive for Lynx is concerned. (We can make

this statement since the corresponding confidence intervals do not include the value 0 and the

intervals cover ranges of positivevalues.) There is no evidence of any difference between F and

G in this respect. (The corresponding confidence interval includes 0.) Thus we use ANOVA to

Descriptive Statistics: Length

Variable Mean StDev

Length 200.00 6.04

Descriptive Statistics: Length

Variable Type Mean StDev

Length E 194.00 4.30

F 202.00 4.74

G 204.00 4.06

Panel 7.30 Descriptive statistics for length and for length by ball type.
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look for evidence that the factor of interest (type of ball) influences the response (length).

If such evidence is found then the follow-up using multiple comparisons establishes evidence

of where the differences lie.

These conclusions are summarized by the software in the component of the Session

window output displayed in Panel 7.32. The rows for types F and G have the letter A in

common, indicating the earlier conclusion of no difference in mean length for these two types.

The rows for E and F and the rows for E andGhave no letters in common, indicating significant

differences between E and F on the one hand and between E and G on the other. In essence

group A consists of types F and G and group B consists of type E on its own.

The overall mean for the experiment was 200. The mean for type E was 194, so we can

think of the effect for type E as being � 6, i.e. using type E reduced mean length by 6m from

the overall mean. The mean for type F was 202, so we can think of the effect for type F as

being 2, i.e. using type F increased mean length by 2m from the overall mean. Similarly, for

type G the effect was 4. Note that the three effects sum to 0. In fitting a statistical model to data

it is usual to write

Observed data value ¼ Value fitted by modelþResidual;

or, more succinctly,

Data ¼ FitþResidual:

Tukey 95% Simultaneous Confidence Intervals

All Pairwise Comparisons among Levels of Type

Individual confidence level = 97.94%

Type = E subtracted from:

Type Lower Center Upper ---+---------+---------+---------+------

F 0.619 8.000 15.381 (---------*----------)

G 2.619 10.000 17.381 (---------*----------)

---+---------+---------+---------+------

-7.0 0.0 7.0 14.0

Type = F subtracted from:

Type Lower Center Upper ---+---------+---------+---------+------

G -5.381 2.000 9.381 (----------*---------)

---+---------+---------+---------+------

-7.0 0.0 7.0 14.0

Panel 7.31 Session window output for Multiple Comparison procedure.

Grouping Information Using Tukey Method

Type N Mean Grouping

G 5 204.000 A

F 5 202.000 A

E 5 194.000 B

Means that do not share a letter are significantly different.

Panel 7.32 Session window summary of Tukey Multiple Comparisons procedure.
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In this case we take

Fit ¼ Overall meanþEffect:

Thus we have:

type E; Fit ¼ 200þð�6Þ ¼ 194;

type F; Fit ¼ 200þ 2 ¼ 202;

type G; Fit ¼ 200þ 4 ¼ 204:

Thus knowing the data and fit values we can compute the residual values as the difference

Data – Fit.

The fit and residual values were computed by Minitab by checking Store fits and Store

residuals in theANOVAdialog. They are displayed in Figure 7.28 –Minitab assigns the names

FITS1 and RESI1 to the columns containing the fitted values and residuals, respectively.

The first drive was of length 200 with a ball of type F for which the fit is 202. Hence,

Residual¼Data � Fit¼ 200 � 202¼ �2. The reader is invited to check the remaining

residual values displayed in Figure 7.28.

The Four in one plot facility under Graphs. . . yields four plots that will be discussed in

turn. They are displayed in Figure 7.29. Theoretically the ANOVA methods used in this

chapter require the assumptions of independence, random samples and normal distributions

with equal variances. The four plots can often indicate when these assumptions are suspect.

1. Normal probability plot of residuals. In this case the plot is reasonably linear so the

normality assumption underlying the valid use of the F-distribution for testing the null

hypothesis appears reasonable.

Figure 7.28 Worksheet with columns of fits and residuals Columns.
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2. Histogram of residuals. A histogram of residuals that does not exhibit reasonable

symmetry would suggest that the assumption of normality was suspect.

3. Residuals versus the fitted values. In addition to normality, the valid use of the

F-distribution requires that the populations of lengths obtained with each type of ball

have equal variances. Support for the assumption of equal variances is provided by

similar vertical spread in the three sets of points.

4. Residuals versus the order of the data. In this case the data are in time order, so any

unusual features in this run chart of the residuals could alert the experimenters to some

factor other than type that might be having an influence on length.

These checks of the assumptions underlying valid use of theF-distribution are often referred to

as diagnostic checks. Having the fits and residuals stored in the worksheet means that one can

carry out one’s own diagnostic checks, e.g. one could useStat>Basic Statistics>Normality

Test. . . in order to obtain a normal probability plot of the residuals with associated P-value.

However visual scrutiny of the four plots discussed above will often be sufficient. The use of

the F-test is fairly robust to relativelyminor departures from the assumptions of normality and

equal variances. However, if there aremajor concerns from scrutiny of the diagnostic plots one

can either seek to transform the data or carry out a nonparametric test.

The portion of the Session window output in Panel 7.33 will now be considered. The

number s¼ 4.378 is an estimate of the common standard deviation, assumed to apply to all

three ball types. It is used to obtain, using the appropriate t-distribution, the 95% confidence

intervals for the population means for the three ball types that are displayed to the right of the

summary statistics. The R-sq (R2) value of 54.9% is the coefficient of determination for length

and fit expressed as a percentage. The reader may readily verify that the correlation between

length and fitted value is 0.741 yielding r2¼ 0.549¼ 54.9%. It indicates that themodel fitted to

Figure 7.29 Four in one residual plots.
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the data explains just over half the variation in length observed. The R-sq (adj) value will be

discussed later in the book.

To sum up, the experiment has provided evidence that ball type influences length of drive

for Lynx. The follow-up analysis indicates that, if the greatest achievable length is desirable,

then she should use either type F or type G but not type E.

As a second example, consider a company involved in telesales that was running a Six

Sigma project in order to improve the sales performance of its staff. A group of 40 new

employees with similar educational backgrounds was split at random into four equal sized

groups. The first group received the standard in-house training, while the other three groups

were each trained by a different external training provider. The three external training

providers comprise the list of accredited trainers for the company. Numbers of sales made

by each employee during their first month of telephone contacts with prospective

customers was recorded. The data are displayed in Table 7.10 and are available in the

worksheet Sales.MTW.

The ANOVA for unstacked data in this form can be carried out using Stat>ANOVA

>One-way (Unstacked). . .. The dialog required is shown in Figure 7.30. Here the factor (X)

of interest is the trainingwith in-house, trainer P, trainer Q and trainer R as levels. The in-house

trained sales staff may be regarded as a control group so, clicking on Comparisons. . .,

Dunnett’s multiple comparison method was selected. As there is no run order in this case

Minitab offers, by clicking onGraphs. . ., aThree in one plotting option for the residuals from

the fittedmodel, whichwas selected together withBoxplots of data. (These plots are not given

S = 4.378 R-Sq = 54.90% R-Sq(adj) = 47.39%

Individual 95% CIs For Mean Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+--------

E 5 194.00 4.30 (--------*--------)

F 5 202.00 4.74 (--------*--------)

G 5 204.00 4.06 (--------*--------)

-+---------+---------+---------+--------

190.0 195.0 200.0 205.0

Pooled StDev = 4.38

Panel 7.33 Portion of the Session window output from one-way ANOVA.

Table 7.10 Telesales data.

In-house Trainer P Trainer Q Trainer R

71 62 55 71

71 62 67 72

59 82 67 90

67 82 71 94

66 64 62 80

45 70 71 80

58 71 72 77

58 71 69 76

55 82 58 75

67 93 53 80
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in the text.) Note that the default family error rate of 5% has been accepted andControl group

level: ‘In-house’ indicates that employees trained in-house comprise the control group.

The reader is invited to verify that a P-value of 0.000 is obtained, which indicates that the

actual P-value is less than 0.0005 (in fact it is 0.000 075). Thus the experiment provides strong

evidence for rejection of the null hypothesis of equal mean sales performance for populations

of employees trained by the four methods. The residual plots were deemed satisfactory.

It should be noted that the data here are actually discrete but the residual plots indicate that the

assumption of approximate normal distributions with equal variances is reasonable.

The Session window output for Dunnet’s multiple comparison procedure is shown in

Panel 7.34. The family error rate of a¼ 0.05 means that there is an overall probability of 5%

of a Type I error, which means in turn that we can have 95% confidence in the group of

three confidence intervals provided. This can be interpreted to mean that, were we to repeat

the experiment over and over again, on 5 occasions out of 100 in the long term the three

confidence intervals would fail to capture all three true differences between the trainer means

and the in-house mean. Conversely, on 95 occasions out of 100 in the long term the three

Figure 7.30 Dialog for ANOVA with unstacked data.

Dunnett's comparisons with a control

Family error rate = 0.05

Individual error rate = 0.0192

Critical value = 2.45

Control = In-house

Intervals for treatment mean minus control mean

Level Lower Center Upper ------+---------+---------+---------+---

Trainer P 3.036 12.200 21.364 (--------*--------)

Trainer Q -6.364 2.800 11.964 (--------*--------)

Trainer R 8.636 17.800 26.964 (--------*--------)

------+---------+---------+---------+---

0 10 20 30

Panel 7.34 Dunnett’s multiple comparisons for training experiment.
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confidence intervals would capture all three true differences between the trainer means and

the in-house mean. The individual error rate of a¼ 0.0192 means that, were we to repeat the

experiment over and over again, on 192 occasions out of 10 000 in the long term an individual

confidence interval would fail to capture the true difference between the trainer mean and

the in-house mean. Conversely, on 9808 occasions out of 10 000 in the long term an

individual confidence interval would capture the true difference between the trainer mean

and the in-house mean.

Thus from the experiment we estimate (rounded to the nearest integer) that the trainer P

population would achieve 12 more sales in a month on average than the in-house population,

with confidence interval (3, 21), the trainerQpopulationwould achieve 3more on average than

the in-house population, with confidence interval (�6, 12), and the trainer Q population would

achieve 18 more on average than the in-house population, with confidence interval (9, 27).

Since the confidence interval for trainer Q includes 0, this indicates that there is insufficient

evidence to conclude that employees trained by trainer Q will perform any better than those

trained in-house. Since the confidence intervals for trainers P and R do not include 0 and cover

positive ranges of values, this indicates that there is evidence that employees trained by trainer

P and R will perform better than those trained in-house. This information is of potential value

to the Six Sigma project team. The summary provided by the software is displayed in

Panel 7.35.

7.5.2 The fixed effects model

Consider again the golf ball experiment where therewas a fixed number, a¼ 3, of ball types of

interest. Thus the factor, X, of interest had a¼ 3 levels. The response, Y, of interest was the

length of drive achieved. Therewere n¼ 5 replications, i.e. the responsewas measured for five

drives with a ball of each type. The underlying statistical model assumed was that, for each

type, the response Y was normally distributed with the same variance for all three types. Thus

the model states that:

for type E; Y � NðmE;s
2Þ;

for type F; Y � NðmF;s
2Þ;

for type G; Y � NðmG;s
2Þ:

With this formulation of themodel the null and alternative hypotheses are stated as follows:

H0 : mE ¼ mF ¼ mG; H1 : Not all ms are identical:

Grouping Information Using Dunnett Method

Level N Mean Grouping

In-house (control) 10 61.700 A

Trainer R 10 79.500

Trainer P 10 73.900

Trainer Q 10 64.500 A

Means not labeled with letter A are significantly different from control level mean.

Panel 7.35 Summary of conclusions from experiment.
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It is customary towritemE asm þ a1,mF asm þ a2 andmG asm þ a3, wherem is referred

to as the overall mean and the effects a1, a2, and a3 are such that a1 þ a2 þ a3¼ 0. Thus the

model states that:

for type E; Y � Nðmþa1;s
2Þ

for type F; Y � Nðmþa2;s
2Þ

for type G; Y � Nðmþa3;s
2Þ:

With this formulation of the model the null and alternative hypotheses are stated

as follows:

H0 : a1 ¼ a2 ¼ a3 ¼ 0; H1 : Not all as are zero:

Table 7.11 shows the ANOVA table for the golf ball experiment together with the expected

values of the mean squares. The analysis of variance partitions the total variation as

represented by the total sum of squares (510 with 14 degrees of freedom) into a component

attributable to the source type of ball (280 with 2 degrees of freedom) and a component

attributable to the source random variation or random error (230 with 12 degrees of freedom).

The component degrees of freedom and the component sums of squares add up to the

corresponding totals (2 þ 12¼ 14 and 280 þ 230¼ 510). In total the experiment yielded a

sample of 15 values of length and a sample of 15 values has 14 degrees of freedom. We can

think also of a sample of threemeans corresponding to the data for the three ball types involved

in the experiment and a sample of three has two degrees of freedom. The mean square

corresponding to the type and error components is obtained by dividing the sum of squares by

degrees of freedom. Montgomery (2009, pp. 142–146) gives general formulae for the

calculation of degrees of freedom and sums of squares.

The test statistic is the ratio of themean squares, i.e. 140/19.2¼ 7.30. If the null hypothesis

is true then all the as would be zero and the expected value of both mean squares would be s2.

Thus, if the null hypothesis is true the test statistic would be expected to have a value around 1.

If the null hypothesis is false then not all the as are zero and the expected value of the

numerator of the ratio yielding the test statistic would be greater than the expected value of the

denominator. Thus if the null hypothesis is false the test statistic would be expected to have a

value greater than 1. When the null hypothesis is true, with the model specified above, the test

statistic has theF distributionwith parameters 2 and 12, i.e. the degrees of freedom for type and

error respectively.Calc>Probability>F. . .may be used to confirm the P-value for the test.

Table 7.11 ANOVA table for golf ball experiment with expected mean squares (fixed

effects).

Source of

variation

Degrees of

freedom (DF)

Sum of

squares (SS)

Mean

square (MS)

Expected mean

square (EMS)

Type 2 280 140 s2 þ n
Pa

i¼1
a2
i

a� 1

Error 12 230 19.2 s2

Total 14 510
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The Sessionwindow output in Panel 7.36 indicates that the probability of obtaining a value

forF of 7.3 or greater is 1 � 0.991 571¼ 0.008 429 so theP-value for the test is 0.008, to three

decimal places, as displayed in the Session window output in Panel 7.29.

The fixed effects model may also be specified as detailed in Box 7.5. The number of levels

of the factor is a and the number of replicates is n. With i¼ 2 and j¼ 3 we have, for example,

Y23 ¼ mþa2 þ e23:

In terms of the golf ball experiment, where there were just three levels of the factor type of

interest, this equation states that the length, Y, for level 2 of the factor (ball type F) with drive 3

is made up of the overall mean, m, plus the effect, a2, for level 2 (ball type F) plus a random

error, e23 (a value from the normal distribution with mean 0 and variance s
2).

7.5.3 The random effects model

Let us examine the data from the golf ball experiment again, but now with one major

difference. Instead of a fixed set of three ball types of interest, let us consider the three types

used in the experiment to have been a random sample of types from themyriad available on the

market. In this scenario a random effects model is appropriate. The questions to be addressed

by the analysis would thus be: How much of the variation observed is attributable to real

differences between mean length, in the population of types from which the three used in the

experiment were selected? How much of the variation observed is attributable to random

variation about these population means?

The random effects model may be specified as detailed in Box 7.6. As in the case of the

fixed effects model, the number of levels of the factor is a and the number of replicates is n.

With i¼ 2 and j¼ 3 we have, for example,

Y23 ¼ mþa2 þ e23:

Cumulative Distribution Function

F distribution with 2 DF in numerator and 12 DF in denominator

  x P (X <= x)
7.3    0.991571

Panel 7.36 Calculation of the P-value for the golf ball experiment.

Observed data value ¼ Overall meanþEffectþRandom Error;

Yij ¼ mþai þ eij i ¼ 1; 2; . . . ; a; j ¼ 1; 2; . . . ; n

X

a

i¼1

ai ¼ 0; eij � Nð0;s2Þ

Box 7.5 Fixed effects model.
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In terms of the golf ball experiment, where there were just three levels of the factor type of

interest, this equation states that the length, Y, for level 2 of the factor (ball type F) with drive 3

is made up of the overall mean,m, plus the effect,a2 (a value from the normal distributionwith

mean 0 and variance s2
a) for level 2 (ball type F) plus a random error, e23 (a value from the

normal distribution with mean 0 and variance s
2).

TheANOVA table is exactly as for the fixed effectsmodel in the casewhere there is a single

factor of interest. However, the null and alternative hypotheses are:

H0 : s
2
a ¼ 0; H1 : s

2
a 6¼ 0:

In order to be able to make a full analysis in the random effects case we will obtain the

ANOVA table using Stat>ANOVA>Balanced ANOVA. . . as indicated in the dialog in

Figure 7.31.

The design or plan used for the experiment was such that there were equal numbers of

drives made with each level of the factor type. This makes the design a balanced one. The

following points should be noted concerning the dialog:

. Under Graphs. . . here there is no facility to create boxplots or an individual plot as in

Figure 7.27 by way of initial display of the data, but these may – and, in the author’s

view, one or other should – always be created separately using the Graphs menu.

. Here with a single factor, type, involved the model is:

Observed data value ¼ Overall meanþEffect of typeþRandom error:

This information is communicated to the software by inserting or selecting Type under

Model:. There is always an overall mean and a random error term on the right-hand side

of the equation that specifies models of the sort employed here, so in this case of a single

factor this entry conveys the key information.

. The information that the factor Type is random is communicated by inserting Type under

Random factors:.

. UnderGraphs. . . the Four in one option for Residual Plots is strongly recommended.

. Finally, under Results. . . the option Display expected mean squares and variance

components should be checked and Display means corresponding to the terms:

should specify the factor Type.

Observed data value¼Overall mean þ Effect þ Random error,

Yij ¼ mþai þ eij; i ¼ 1; 2; . . . ; a; j ¼ 1; 2; . . . ; n

ai � Nð0;s2
aÞ; eij � Nð0;s2Þ

(the random variables ai and eij are independent)

Box 7.6 Random effects model.
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The individual value plot in Figure 7.27 suggests that there is a component of variation in the

response length of drive (Y) that may be attributed to factor ball type (X). Formal

confirmation is obtained from the portion of the Session window output displayed in

Panel 7.37. The null hypothesis H0 :s
2
a ¼ 0 would be rejected in favour of the alternative

hypothesis H1 :s
2
a 6¼ 0 at the 1% level of significance, since the P-value is 0.008. Thus the

experiment provides strong evidence that s2
a, the component of variance in drive length

attributable to ball type, is nonzero.

Table 7.12 gives the ANOVA table, together with the expected values of the mean squares

for a random effects scenario. Here the number of replicates, n, was 5. We can take the

observed mean squares as estimates of the corresponding expected mean squares. Thus s2 is

estimated by 19.17 sos is estimated by the square root of 19.17, which is 4.378. Alsos2 þ 5s2
a

ANOVA: Length versus Type

Factor Type Levels Values

Type random 3 E, F, G

Analysis of Variance for Length

Source DF SS MS F P

Type 2 280.00 140.00 7.30 0.008

Error 12 230.00 19.17

Total 14 510.00

Panel 7.37 ANOVA table for golf ball experiment.

Figure 7.31 Dialog for balanced ANOVA.
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is estimated by 140, so 5s2
a is estimated by the difference 140 � 19.17¼ 120.83. Hence, s2

a is

estimated by 120.83/5¼ 24.17. The two components of variance are both given in the

annotated section of the Session window output shown in Panel 7.38. The shorthand (2)

represents the component of variance due to ball type i.e. to s2
a . The shorthand (1) represents

the random error variance s
2. Thus Minitab does all the calculations of the components of

variance. The value s in the top left corner is the estimate of s. The residuals and fitted values

are the same as in the case of the fixed effects model so the R-sq value is as before.

The final portion of the Session window output gives the means for the three ball types that

were selected at random from the population of available types. The fits and residuals are

exactly as before and therefore the diagnostic plots are as before.

Imagine that Lynx goes to a driving range and selects a bucket of golf balls that constitute a

random sample from the large population of golf ball types used in the random effects

experiment. We can use the model to predict the distribution of length that will be achieved:

Observed data value ¼ Overall meanþEffect of typeþRandom error:

Since the observed data value is a constant plus the sum of two independent random

variables the result in Box 4.2 in Section 4.3.1 may be applied to calculate the mean and

variance of the randomvariable length as detailed inBox 7.7. (A constantmay be considered as

a random variable with variance zero!) Thus the estimated total variance is 43.34 and the

estimated proportion of total variance accounted for by ball type is 24.17/43.34¼ 55.8%.

Since a sum of independent normally distributed random variables is also normally distributed

we can finally predict that the distribution of length on the driving range would be

N(200, 6.582).Were Lynx to opt, for example, to use a balls of typeG only then the distribution

of length would be estimated to be N(204, 4.382).

Table 7.12 ANOVA table for golf ball experiment with expected mean squares (random

effects).

Source of

variation

Degrees of

freedom (DF)

Sum of

squares (SS)

Mean

square (MS)

Expected mean

square (EMS)

Type 2 280 140 s2 þ ns2
a

Error 12 230 19.17 s2

Total 14 510

S = 4.37798 R-Sq = 54.90% R-Sq(adj) = 47.39%

Expected Mean

Square for Each

Term (using

Variance Error unrestricted

Source component term model)

1 Type 24.17 2 (2) + 5 (1) [corresponding to σ
2 

+ nσ
2 

a]

2 Error 19.17 (2) [corresponding to σ
2 ]

Panel 7.38 Components of variance for golf ball experiment.

EXPERIMENTS WITH A SINGLE FACTOR HAVING MORE THAN TWO LEVELS 279



Montgomery (2005a, p. 487) gives an industrial example involving components of

variance. A textile company weaves a fabric on a large number of looms. Interest centred

on loom-to-loom variability in the tensile strength of the fabric. Four looms were selected at

random and four random samples of fabric from each loom were tested, yielding the data in

Table 7.13. The data are available in stacked form in the worksheet Looms.MTW and are

reproduced by permission of John Wiley & Sons, Inc., New York.

Initial analysis of the data was carried out using Stat>ANOVA>One-Way. . . with the

Individual value plot option selected under Graphs. . . together with Normal plot of

residuals and Residuals versus fits. Scrutiny of the individual value plot suggests that there

is variation attributable to the factor loom; this is confirmed by a P-value of 0.000 (to three

decimal places) which indicates very strong evidence of such significant variation. The normal

probability plot was reasonably straight and the vertical spreads of residuals similar in the plot

of residuals versus fits. Thus one can be satisfied that a random effects model of the form used

in the previous example is appropriate.

Having established a significant loom effect, Stat>ANOVA>Balanced ANOVA. . .

was used to obtain the components of variance shown in Panel 7.39. Hence the mean and

variance of Tensile Strength may be estimated as detailed in Box 7.8. Thus the estimated total

Yij ¼mþaiþeij; ai �Nð0;s2
aÞ; ei �Nð0;s2Þ:

Mean of Yij ¼mþ0þ0¼mwhich is estimated as200; the overall mean for the experiment:

Variance of Yij ¼ 0þs2
aþs2which is estimated by0þ24:17þ19:17¼ 43:34¼ 6:582:

Box 7.7 Calculation of the mean and variance of length.

Table 7.13 Tensile strength data.

Loom Tensile strength (psi)

1 98 97 99 96

2 91 90 93 92

3 96 95 97 95

4 95 96 99 98

S = 1.37689 R-Sq = 79.68% R-Sq(adj) = 74.60%

Expected Mean

Square for Each

Term (using

Variance Error unrestricted

Source component term model)

1 Loom 6.958 2 (2) + 4 (1)

2 Error 1.896 (2)

Panel 7.39 Components of variance for looms experiment.
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variance is 8.854 and the estimated proportion of total variance accounted for by the factor

loom is 6.958/8.854¼ 78.6%. The overall mean for the experiment was 95.438, so we can

estimate that the distribution of tensile strength for fabric produced on the population of looms

would be N(95.438, 2.9762). This model, together with a reference line indicating the lower

specification limit of 90 psi for tensile strength, is shown in Figure 7.32. The process is

therefore operating with a Cpk of the order of 0.6 (sigma quality level of around 3.3).

Montgomery comments:

A substantial proportion of the production is fallout. This fallout is directly related

to the excess variability resulting from differences between looms. Variability in

loom performance can be caused by faulty set-up, poor maintenance, inadequate

supervision, poorly trained operators and so forth. The engineer or manager

responsible for quality improvement must remove these sources of variability

from the process.

7.5.4 The nonparametric Kruskal–Wallis test

Consider again the telesales data displayed in Table 7.10 and available in worksheet Sales.

MTW. The sales figures are actually counts, so it could be argued that an analysis of variance,

Yij ¼ mþai þ eij ; ai � Nð0;s2
aÞ; ei � Nð0;s2Þ:

Mean of Yij ¼ mwhich is estimated as 95:438; the overall mean for the experiment:

Variance of Yij ¼ s2
a þs2 which is estimated by 6:958þ 1:896 ¼ 8:854 ¼ 2:9762:

Box 7.8 Calculation of the mean and variance of tensile strength.

Figure 7.32 Estimated distribution of tensile strength.
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with the underlying assumption of normality, is inappropriate. Minitab provides two non-

parametric tests for experiments involving a single factor with more than two levels – the

Kruskal–Wallis test and Mood’s median test.

In order to perform a Kruskal–Wallis test with Minitab the response data and the factor

levels must appear in two columns. This can readily be arranged using Data> Stack>
Columns. . .. All four columns are entered into the Stack the following columns: window.

WithColumn of current worksheet: checked and Sales entered, Store subscripts in: Source

specified andUse variable names in subscript column checked, the stacked data are stored in

a column named Sales and the levels of the factor are stored in a column named Source. A

portion of the stacked data can be seen in Figure 7.33. Then Stat>Nonparametrics>
Kruskal-Wallis. . . leads to the dialog also shown in Figure 7.33.

The Session window output is shown in Panel 7.40. The sample size and median are

given for each level of Source. The test is a generalization of the Mann–Whitney test and is

based on ranks. The average rank for each level of the factor is given together with a

corresponding z-value. The null hypothesis is that the samples are from identical

populations. The test-statistic is denoted by the letter H. The corresponding P value is

given and in this case indicates very strong evidence that the populations sampled are not

identical, i.e. that the training methods are not equally effective. The procedure does not

Figure 7.33 Dialog for Kruskal–Wallis test.

Kruskal-Wallis Test: Sales versus Source

Kruskal-Wallis Test on Sales

Source N Median Ave Rank Z

In-house 10 62.50 11.4 -2.83

Trainer P 10 71.00 24.4 1.22

Trainer Q 10 67.00 14.4 -1.91

Trainer R 10 78.50 31.8 3.51

Overall 40 20.5

H = 19.09 DF = 3 P = 0.000

H = 19.24 DF = 3 P = 0.000 (adjusted for ties)

Panel 7.40 Session window output for Kruskal–Wallis test.
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provide an option to display the data, nor does it provide any facility for comparisons. When

used in a situation in which ANOVA could legitimately be used it provides a less powerful test

than ANOVA.

7.6 Blocking in single-factor experiments

To introduce the idea of blocking, we will consider an experiment where the single factor of

interest is variety of potato and the response of interest is yield in tonnes per hectare (t/ha).

Denote the three levels of thevariety factor byA,B andC. Suppose that 12 plots, numbered 1 to

12, are available for the experiment, as shown in Figure 7.34, and that random allocation of

varieties to the plots led to the design indicated.

Imagine that there is a wood to the west of the plots and a river to the east. This could

conceivably lead to a fertility gradient in the direction of the arrow due to greater amounts of

bothmoisture and nutrients in the soil, the further plots are from thewood. A concern with this

completely randomized design is that variety Amight appear to perform well in terms of yield

not because it was superior to the other varieties but because the plots planted with A were

favourably placed in terms of a possible fertility gradient.

A superior experimental design in this situation would be achieved through the use of

blocking. Each strip of three plots running in a north–south direction would be designated as a

block, yielding four blocks as indicated in Figure 7.35. Subsequently the three varieties would

be allocated at random within each block. Suppose that the arrangement shown in Figure 7.36

arose. This is a randomized complete block design. The numbers in brackets are the yield

values. (As with the golf ball experiment, fictitious integer data have been used in order to

make the arithmetic simple when introducing key concepts.)

The term ‘block’ is a legacy from the early application of designed experiments to

agricultural research. ‘Block’ meant a block of land as in this introductory example. In

experimental design it now refers to groups of experimental units that are homogeneous. If the

factor of interest has, say, four levels then a blockmight consist of four plots of land adjacent to

each other, four test cubes of concrete from the same batch, four pigs from the same litter etc.

1. B 2. C 3. A 4. C

5. C 6. C 7. A 8. A

9. B 10. B 11. B 12. A

Wood
Possible fertility gradient

River

N

EW

S

Figure 7.34 Completely randomized design.

Wood

N

EW

S

Block 1 Block 2 Block 3 Block 4

C (27) B (28) B (29) C (37)

A (20) C (32) A (25) B (40)

B (31) A (24) C (36) A (31)

Possible fertility gradient

River

Figure 7.35 Randomized complete block design.
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The data from the experiment are tabulated in Table 7.14 and available in Potato.MTW.

In order to analyse the data viaMinitab they have to be arranged into three columns specifying

variety, block and yield, respectively.Yield is the response andwe have two factors, variety and

block. Thus we may use Stat>ANOVA>Two-Way. . . to perform an analysis of variance.

The dialog is shown in Figure 7.36.

Yield is entered as the Response:, Variety as the Row factor: and Block as the Column

factor:. (The levels of variety correspond to the rows, and the levels of block correspond to the

columns of Table 7.14.) The Display means option was checked for both factors. Store

residuals and Store fits were checked. It is essential that Fit additive model be checked

when using this procedure to analyse data from a randomized complete block design where

there is a single factor of interest (variety in this case).

Under Graphs. . ., the option to display the data using an Individual value plot was

selected togetherwithNormal plot of residuals. The individual value plot given in Figure 7.37

suggests that both variety B and variety C give heavier yield than does variety A. It also

suggests that the use of blockingmay have beenwise since yield generally increases across the

blocks from west to east.

The ANOVA table from the Session window output is displayed in Panel 7.41. The

P-values for both variety and block are less than 0.05 so the experiment provides evidence,

at the 5% level of significance, that variety has a significant influence on the response yield

and evidence of block effect. Thus it would appear that the experimenters were justified in

using blocking.

The overall mean yield for the experiment was 30. Having checked the Display means

option for both the row and column factors, the means for variety and block are displayed

below the ANOVA table in the Session window output and are given in Table 7.15.

Figure 7.36 Dialog for a two-way analysis of variance.

Table 7.14 Data from randomized complete block design.

Block 1 Block 2 Block 3 Block 4

Variety A 20 24 25 31

Variety B 31 28 29 40

Variety C 27 32 36 37
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The mean for variety Awas 25. One can therefore think of the effect for variety A as being

�5, i.e. variety A reduced mean yield by 5 t/ha from the overall mean of 30 t/ha. The mean for

variety B was 32 so we can think of the effect for variety B as being 2, i.e. variety B increased

mean yield by 2 t/ha from the overall mean of 30. Similarly, for variety C the effect was 3. Note

that the three variety effects sum to 0. Themean for block 1 was 26. One can think of the effect

for block 1 as being –4, i.e. block 1 reduced mean yield by 4 t/ha from the overall mean.

Similarly,the effects for blocks 2, 3 and 4 were �2, 0 and 6, respectively. Note that the four

block effects sum to 0.

Figure 7.37 Individual value plot of Yield.

Two-way ANOVA: Yield versus Variety, Block

Source DF SS MS F P

Variety 2 152 76.0000 9.91 0.013

Block 3 168 56.0000 7.30 0.020

Error 6 46 7.6667

Total 11 366

S = 2.769 R-Sq = 87.43% R-Sq(adj) = 76.96%

Panel 7.41 ANOVA for potato experiment.

Table 7.15 Data with means from randomized complete block experiment.

Block 1 Block 2 Block 3 Block 4 Mean

Variety A 20 24 25 31 25

Variety B 31 28 29 40 32

Variety C 27 32 36 37 33

Mean 26 28 30 36 30
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We have already seen the general form of model:

Data ¼ FitþResidual:
In this case we take

Fit ¼ Overall meanþVariety effectþBlock effect:
Thus we have:

variety A in block 1 : Fit ¼ 30þð�5Þþ ð�4Þ ¼ 21;

variety B in block 1 : Fit ¼ 30þ 2þð�4Þ ¼ 28;

variety C in block 1 : Fit ¼ 30þ 3þð�4Þ ¼ 29;

variety A in block 2 : Fit ¼ 30þð�5Þþ ð�2Þ ¼ 23;

variety B in block 2 : Fit ¼ 30þ 2þð�2Þ ¼ 30;

variety C in block 2 : Fit ¼ 30þ 3þð�2Þ ¼ 31;

variety A in block 3 : Fit ¼ 30þð�5Þþ 0 ¼ 25;

variety B in block 3 : Fit ¼ 30þ 2þ 0 ¼ 32;

variety C in block 3 : Fit ¼ 30þ 3þ 0 ¼ 33;

variety A in block 4 : Fit ¼ 30þð�5Þþ 6 ¼ 31;

variety B in block 4 : Fit ¼ 30þ 2þ 6 ¼ 38;

variety C in block 4 : Fit ¼ 30þ 3þ 6 ¼ 39:

We can now compute the residual values as the differences Data – Fit. The reader is invited

to check the calculations in the first few rows of Table 7.16 and to observe that, having checked

both Store residuals and Store fits, both residuals and fits are displayed in the worksheet.

The fixed effects model may also be specified as detailed in Box 7.9. For the potato

experiment the number of levels of the factor of interest, variety, is a¼ 3 and the number of

Table 7.16 Fitted values and residuals for potato experiment.

Variety Block Data (yield) Overall mean Variety effect Block effect Fit Residual

A 1 20 30 �5 �4 21 �1

B 1 31 30 2 �4 28 3

C 1 27 30 3 �4 29 �2

A 2 24 30 �5 �2 23 1

B 2 28 30 2 �2 30 �2

C 2 32 30 3 �2 31 1

A 3 25 30 �5 0 25 0

B 3 29 30 2 0 32 �3

C 3 36 30 3 0 33 3

A 4 31 30 �5 6 31 0

B 4 40 30 2 6 38 2

C 4 37 30 3 6 39 �2
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levels of what some refer to as a ‘nuisance’ factor block is b¼ 4. With i¼ 2 and j¼ 3, for

example, we have the specific relationship

Y23 ¼ mþa2 þb3 þ e23:

This equation therefore states that the yield for the plot plantedwith variety 2 (B) in block 3

ismade up of the overallmean,m, plus the effect for variety 2,a2, plus the effect for block 3,b3,

plus a random error (value) from the normal distribution with mean 0 and variance s2. At the

core of this model we have the addition of the two effectsa2 andb3, one for variety and one for

block – hence the need to check Fit additive model in the dialog.

There are two null hypotheses to be tested against alternatives. The first states that all the

variety effects are zero, the second that all the block effects are zero. Formally they are stated

as follows:

H0 : a1 ¼ a2 ¼ a3 ¼ 0; H1 : Not all as are zero;

H0 : b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0; H1 : Not all bs are zero:

The P-values corresponding to these were 0.013 and 0.020 respectively, so both null

hypotheses would be rejected at the 5% level of significance.

Having obtained evidence of variety having leverage in determining yield, it is useful to be

able to carry out follow-up analysis using multiple comparisons. This is not available via

Stat>ANOVA>Two-Way. . . but is available via Stat>ANOVA>General Linear

Model. . .. The dialog is shown in Figure 7.38.

In Model: we are communicating to Minitab the nature of the model we are using, i.e.

Yij ¼ mþai þbj þ eij . Generally suchmodels always include an overallmean and the random

error term so by entering Variety and Block inModel:we are indicating the expressionai þbj

at the core of the equation that defines the model in this scenario.

The subdialog for Comparisons: is also shown in Figure 7.38. Here Pairwise compar-

isons were selected, by the Tukeymethod with Terms: Variety.Grouping information and

Confidence interval, with default Confidence level: 95.0, were checked. The latter part of

corresponding section of the Session window output is shown in Panel 7.42.

The interpretation of this is as follows:

. On average the yield of variety B is 7 t/ha more than that for variety A, with confidence

interval 1 to 13 t/ha (to the nearest integer).

. On average the yield of variety C is 8 t/ha more than that for variety A, with confidence

interval 2 to 14 t/ha (to the nearest integer).

Observed data value ¼ Overall meanþ Factor effectþBlock effectþRandom error

Yij ¼ mþai þbj þ eij; i ¼ 1; 2; . . . ; a; j ¼ 1; 2; . . . ; b;

X

a

i¼1

ai ¼ 0;
X

b

i¼1

bi ¼ 0; ei � Nð0;s2Þ

Box 7.9 The fixed effects model
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. On average the yield of variety C is 1 t/ha more than that for variety B, with confidence

interval –5 to 7 t/ha (to the nearest integer).

Since the first two confidence intervals do not include 0we have evidence that the yield of both

varieties B and C is superior to that of variety A. The fact that the third confidence interval

includes 0 means that we have no evidence of a difference in mean yield for varieties B and C.

Thus the experimentation has provided evidence that both varieties B and C give significantly

greater mean yield than does variety A. However, it does not provide any evidence of a

difference in yield for B and C.

The earlier part of the Sessionwindowoutput fromComparisons is displayed in Panel 7.43.

This summarizes the conclusions that stem from scrutiny of the confidence intervals, i.e. that

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable Yield

All Pairwise Comparisons among Levels of Variety

Variety = A subtracted from:

Variety Lower Center Upper --------+---------+---------+--------

B 0.9915 7.000 13.01 (---------*---------)

C 1.9915 8.000 14.01 (---------*---------)

--------+---------+---------+--------

0.0 6.0 12.0

Variety = B subtracted from:

Variety Lower Center Upper --------+---------+---------+--------

C -5.008 1.000 7.008 (---------*---------)

--------+---------+---------+--------

0.0 6.0 12.0

Panel 7.42 Session window output from Comparisons.

Figure 7.38 General Linear Model dialog.
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the means for varieties B and C do not differ significantly whereas the means for both A and B

and A and C do.

Iman and Conover (1989, p. 631) give an example of a purchasing agent seeking to obtain

word-processing softwarewith which operators have the best production rate. Three candidate

packages for purchasewere assessed in a randomized complete block experiment in which six

operators were treated as blocks. The responsewas the time taken (minutes) to input a standard

document. The data are reproduced by permission of the authors in Table 7.17 and are

available, in stacked form, in the worksheet Packages.MTW.

It is left as an exercise for the reader (remember to check Fit additive model!) to verify

that there is evidence of differences between packages (P-value 0.045) and very strong

evidence of differences between operators (P-value 0.000 to three decimal places). The normal

probability plot of the residuals is satisfactory. The Session window output for Multiple

Comparisons obtained via Stat>ANOVA>General Linear Model. . . using the Tukey

method is shown in Panel 7.44. Note that in the Comparisons. . . subdialog box Terms:

Package is required.

For example, the point estimate of the population mean time using package 1 was 47.3

minutes, while that for package 3 was 50.3 minutes. The point estimate of the difference in the

means is 3minutes with confidence interval (0.2, 5.8) minutes (rounded to one decimal place).

The fact that this confidence interval does not include 0 indicates that the document can be

produced significantly faster with package 1 than with package 3. Since the other confidence

intervals both include 0 we cannot claim a significant difference between package 1 and 2 and

we cannot claim a significant difference between package 2 and 3. These three confidence

intervals together have overall confidence level of 95%.

Grouping Information Using Tukey Method and 95.0% Confidence

Variety N Mean Grouping

C 4 33.0 A

B 4 32.0 A

A 4 25.0 B

Means that do not share a letter are significantly different.

Panel 7.43 Session window output from Comparisons.

Table 7.17 Word-processing package assessment data.

Word-processing package

Operator 1 2 3

1 42 45 45

2 37 36 40

3 53 56 55

4 68 73 75

5 48 45 47

6 36 39 40
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Some report the grouping information provided at the top of Panel 7.44 by listing the levels

of the factor of interest and underlining those for which the mean responses do not differ

significantly:

Package 3 Package 2 Package 1 

ImanandConover (1989,p.638)comment that ‘thedataarenotsufficientlystrong to indicate

a difference between software package 2 and the other word processing software packages, but

they are significantly strong to declare a difference between software packages 1 and 3’.

Some authors refer to experimental designs that involve blocking as ‘noise-reducing’

experimental designs. ‘Designing for noise reduction is based on the single principle of

making all comparisons of treatments within relatively homogeneous groups of experimental

units. The more homogeneous the experimental units the easier it is to detect a difference in

treatments’ (Mendenhall et al., 1986, p. 525). The reader is invited to verify that, were we to

ignore the blocking and do a one-way ANOVA then a P-value of 0.923 would be obtained.

Thus na€ıve analysis of the data, which fails to take operator into account as a blocking factor,

provides no evidence of any package effect.

The Friedman test is a nonparametric test that may be used to analyse data from a

randomized complete block experiment. It may be implemented using Stat>Nonpara-

metrics>Friedman. . .. For the data from the potato experiment the Sessionwindowoutput is

shown in Panel 7.45. The reader is invited to check it as an exercise. In some cases where

Grouping Information Using Tukey Method and 95.0% Confidence

Package N Mean Grouping

3 6 50.3 A

2 6 49.0 A B

1 6 47.3 B

Means that do not share a letter are significantly different.

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable Time

All Pairwise Comparisons among Levels of Package

Package = 1 subtracted from:

Package Lower Center Upper -------+---------+---------+---------

2 -1.147 1.667 4.480 (-------------*-------------)

3 0.186 3.000 5.814 (-------------*-------------)

-------+---------+---------+---------

0.0 2.0 4.0

Package = 2 subtracted from:

Package Lower Center Upper -------+---------+---------+---------

3 -1.480 1.333 4.147 (-------------*-------------)

-------+---------+---------+---------

0.0 2.0 4.0

Panel 7.44 Session window output from Comparisons.
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identical values or ties occur amongst the values of the response two P-values are given, the

second taking ties into account.

In the dialog for this analysis Minitab refers to ‘Treatment’ rather than ‘Factor’. The

P-value quoted is for a test of the null hypothesis H0 : all treatment effects are zero, versus the

alternative hypothesis H1 : not all treatment effects are zero. It is on the brink of being

significant at the 5% level. The earlier analysis based on the assumption of underlying normal

distributions gave a corresponding P-value of 0.013.

The Friedman test is another non-parametric procedure that is based on ranks. Residuals

and fits may be computed using Minitab. Multiple comparisons based on ranks may be made,

but this facility is not provided by Minitab – technical details are given in Iman and Conover

(1989, p. 658).

7.7 Experiments with a single factor, with more than two

levels, where the response is a proportion

Aglass bottlemanufacturer had been receiving complaints from customers concerning tears in

and imperfect sealing of the shrinkwrap used on pallets of bottles. A Six Sigma project team

carried out a single-factor experiment in which shrinkwrap from each of three suppliers A, B

and C was used to seal 1200 pallets of bottles. Following shipment to a customer all 3600

pallets were checked and the numbers of nonconforming pallets recorded. The data are

summarized in Table 7.18.

The null hypothesis of interest here isH0 : p1¼ p2¼ p3 and the alternative isH1 : Not all pi
are identical (i¼ 1, 2, 3), where p1, p2 and p3 represent the population proportion of

nonconforming pallets sealed with shrinkwrap from suppliers A, B and C, respectively. We

could analyse the above data formally using three tests for equality of two proportions – one to

compareAwith B, one to compare Bwith C, and a final one to compare CwithA.However, the

Friedman Test: Yield versus Variety blocked by Block

S = 6.00 DF = 2 P = 0.050

Sum of

Variety N Est Median Ranks

A 4 24.500 4.0

B 4 31.167 10.0

C 4 31.833 10.0

Grand median = 29.167

Panel 7.45 Session window output for Friedman test.

Table 7.18 Nonconfoming pallet data.

Supplier

Status A B C Total

Nonconforming 34 57 29 120

Conforming 1166 1143 1171 3480

Total 1200 1200 1200 3600

% Nonconforming 2.8 4.8 2.4 3.3
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problem of the increased risk of a Type I error with this approach has already been discussed in

Section 7.5.

If the null hypothesis is true then the proportions are homogeneous across suppliers – hence

the test to be used is referred to as a test of homogeneity. It is available using Stat>Tables

>Chi-Square Test (Two-Way Table inWorksheet). . .. The dialog is shown in Figure 7.39.

The table required can be seen in theworksheet in the figure and consists of the shaded portion

ofTable 7.18.Note that the first rowof each columngives the number of nonconforming pallets

for the supplier and the second row gives the number of conforming pallets for the supplier.

The Session window output is displayed in Panel 7.46. Out of a total of 3600 pallets, 120

were nonconforming. If the null hypothesis is true then 120/3600¼ 1/30 provides an

estimate of the common proportion of nonconforming pallets for shrinkwrap from all

three suppliers. Thus for shrinkwrap from each supplier we would expect to find one in 30

of the 1200, i.e. 40 pallets, to be nonconforming and the remaining 1160 to be conforming.

These expected counts, Ei, have been computed and displayed below the observed counts, Oi,

in the table in the output.

The test statistic involves the differences between the observed and expected counts and is

calculated as shown in Box 7.10. The central involvement ofOi �Ei in the formula for the chi-

square test statisticmeans that its value is relatively lowwhen there is good agreement between

observed and expected counts. Poor agreement arises when the null hypothesis is false, leading

to a relatively large value of the test statistic. The P-value may be confirmed using Calc>
Probability Distributions>Chi-square. . .. The Session window output is given in

Figure 7.39 Dialog for test of homogeneity of proportions.
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Panel 7.47. It indicates that the probability of obtaining a chi-square value of 11.534 or greater,

were the null hypothesis true, would be 1 � 0.996 871¼ 0.003 129, or 0.003 to three decimal

places, as stated in Panel 7.46. Thus the data from the experiment provide evidence, at the 1%

level of significance, that the suppliers perform differently in terms of proportion of non-

conforming. Formally, the null hypothesisH0 : p1¼ p2¼ p3would be rejected in favour of the

alternative H1 : Not all pi are identical (i¼ 1, 2, 3) at the 1% level of significance. It therefore

appears that supplier B performs significantly worse than the other two (4.8% nonconforming

compared with 2.8% and 2.4%, respectively).

Chi-Square Test: A, B, C

Expected counts are printed below observed counts

Chi-Square contributions are printed below expected counts

A B C Total

1 34 57 29 120

40.00 40.00 40.00

0.900 7.225 3.025

2 1166 1143 1171 3480

1160.00 1160.00 1160.00

0.031 0.249 0.104

Total 1200 1200 1200 3600

Chi-Sq = 11.534, DF = 2, P-Value = 0.003

Panel 7.46 Session window output for chi-square test.

The chi-square test statistic is given by

x2 ¼
X

k

i¼1

ðOi �EiÞ2
Ei

where k is the number of cells in the table. Thus

x2 ¼ ð34� 40Þ2
40

þ ð57� 40Þ2
40

þ ð29� 40Þ2
40

þ ð1166� 1160Þ2
1160

þ ð1143� 1160Þ2
1160

þ ð1171� 1160Þ2
1160

¼ 0:900þ 7:225þ 3:025þ 0:031þ 0:249þ 0:104
¼ 11:534

(note how these six contributions to the test statistic appear in the output). The only

parameter of a chi-square distribution is its number of degrees of freedom, which in this

case is a � 1 where a is the number of levels of the supplier factor, i.e. 3 � 1¼ 2.

Box 7.10 Calculation of the chi-square test statistic.
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7.8 Tests for equality of variances

Two-sample t-tests and one-way ANOVA tests that required the assumption of equal

population variances were discussed earlier in the chapter. Support for the assumption may

be obtained from scrutiny of displays of the data in the form of individual value plots or

boxplots. Minitab provides formal tests of the null hypothesis of equal variances. Consider

again themagnesium assay data in Table 7.6, stored inMagnesium.MTW.Use of Stat>Basic

Statistics> 2 Variances. . . provides a test of the null hypothesis that the two population

variances are the same, i.e. the null hypothesisH0 : s
2
1 ¼ s2

2, versus the alternative hypothesis

that they are not,H1 : s
2
1 6¼ s2

2. The null hypothesis is equivalent toH0: s1¼s2, which in turn

is equivalent toH0 :s1/s2¼ 1. The dialog is shown in Figure 7.40. The alternative hypothesis

is equivalent to H1 :s1 6¼s2, which in turn is equivalent to H1 :s1/s2 6¼ 1. In completing the

dialog the reader is urged to use theGraphs. . . button to select either an individual value plot or

boxplot of the data.

Key components of the Session window output are shown in Panel 7.48. The F-test for

equality of variances yields aP-value 0.021, so the null hypothesis of equal varianceswould be

rejected at the 5% level of significance. Valid application of this test requires the distributions

to be normal. Levene’s test for equality of variances yields a P-value 0.016, so the null

Cumulative Distribution Function

Chi-Square with 2 DF

x P( X <= x )

11.534 0.996871

Panel 7.47 Calculation of the P-value.

Figure 7.40 Dialog for test of equality of variances.
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hypothesis of equal variances would be rejected at the 5% level of significance. Valid

application of this test simply requires the distributions to be continuous.

As a second example, consider the drive length data in Figure 7.26, also available in Types.

MTW. Here, in the fixed effects scenario, there were three populations of interest correspond-

ing to the three ball types. Use of Stat>ANOVA>Test for Equal Variances. . . provides a

test of the equality of two or more variances – in this case of the null hypothesis

H0 : s
2
1 ¼ s2

2 ¼ s2
3 versus the alternative hypothesis H1: not all variances are equal.

The dialog is shown in Figure 7.41.

The Session Widow output is shown in Panel 7.49. Graphical output is provided but is not

reproduced here. With P-values of 0.956 and 0.851 there is no reason to doubt the null

hypothesis of equal variances for the three types. Bonferroni confidence intervals are given for

the population standard deviations. Aswith the Tukey procedure formultiple comparisons, the

Bonferroni procedure is designed to yield a set of confidence intervals with an overall joint

confidence level – the default of 95% was specified in this example. The user may change the

Test and CI for Two Variances: A, B

Method

Null hypothesis Sigma(A) / Sigma(B) = 1

Alternative hypothesis Sigma(A) / Sigma(B) not = 1

Significance level Alpha = 0.05

…………………………………………………………………………………………………………………

Tests

Test

Method DF1 DF2 Statistic P-Value

F Test (normal) 3 7 0.04 0.021

Levene's Test (any continuous) 1 10 8.28 0.016

Panel 7.48 Session window output for test for equal variances.

Figure 7.41 Dialog for test of equality of variances.
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confidence level viaOptions:. The assumption required for thevalid use of each test is stated in

brackets in the Session window output after the name of each test.

In addition to the use of these tests concerning the variability of populations for checking

the validity of assumptions underlying the use of tests concerning location, they provide a

means of analysing data from an experiment with a single factor where variability is the

response of interest.

7.9 Exercises and follow-up activities

1. The output from a manufacturing operation over many weeks was, on average, 2000

units per day with standard deviation 400 units. Following changes to plant config-

uration the outputs for a sample of 25 days were as displayed in Table 7.19.

The data are available in the supplied file Output.xls.

(i) Display the data.

(ii) Do you think that there has been a ‘real’ increase in mean daily output?

(iii) State null and alternative hypotheses.

(iv) Carry out a formal test of these hypotheses.

(v) State your conclusion both formally and in plain English.

(vi) What assumption(s) have you made in order to carry out the test?

2. The United States Golf Association (2008) has a requirement concerning golf balls

which states: ‘The combined carry and roll of the ball, when tested on apparatus

Test for Equal Variances: Length versus Type

95% Bonferroni confidence intervals for standard deviations

Type N Lower StDev Upper

E 5 2.32449 4.30116 16.5547

F 5 2.56350 4.74342 18.2569

G 5 2.19525 4.06202 15.6343

Bartlett's Test (Normal Distribution)

Test statistic = 0.09, p-value = 0.956

Levene's Test (Any Continuous Distribution)

Test statistic = 0.16, p-value = 0.851

Panel 7.49 Session window output for test for equal variances.

Table 7.19 Sample of daily outputs.

2325 2756 2358 2239 2660

1711 2176 1840 2082 2008

1760 2473 1998 2304 2215

2145 1900 1779 1709 2145

1596 2278 2482 2426 2160
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approved by theUnited StatesGolfAssociation,must not exceed the distance specified

under the conditions set forth in theOverallDistance Standard for golf balls on filewith

theUnitedStatesGolfAssociation.’ TheQCManager atAcme tested a random sample

of 16 balls of a particular brand using similar equipment on the company’s range, with

the results displayed in Table 7.20. (Experience has shown that a standard deviation of

12 yards is typical for balls manufactured by Acme.)

(i) Display the data.

(ii) Do you think that the data for the brand of ball suggest a mean value that differs

from the current Overall Distance Standard of 317 yards?

(iii) Explain why a two-tailed test is appropriate here.

(iv) State null and alternative hypotheses and carry out a formal test of these

hypotheses.

(v) State your conclusion both formally and in plain English.

(vi) What assumption(s) have you made in order to carry out the test?

3. Suppose that initially assembly of P86 modules took on average 50.0 minutes with

standard deviation 4.2 minutes. At a later date a sample of nine assembly times

(minutes) was 44, 48, 45, 45, 46, 49, 48, 51 and 47.

Evaluate the evidence for a reduction in the mean assembly time using a z-test, a t-

test, a sign test and a Wilcoxon test. State any assumptions required for each test and

whether or not they are reasonable.

Estimate the size of sample required to detect evidence, at significance level

0.01 and with power 0.99, of a reduction in the mean of 2 minutes assuming

that the standard deviation has remained at 4.2 and also without making this

assumption.

4. An accountant believes that a company’s cash flow problems are due to outstanding

accounts receivable. She claims that 70% of the current accounts receivable are over

3 months old. A sample of 120 accounts receivable revealed 78 over 3 months old.

Verify that the accountant’s claim cannot be rejected at the at the 5% level of

significance. Estimate the size of sample required to provide evidence, at significance

level 0.05 and with power 0.9, of a reduction in the proportion from 70% to 60%.

5. A supplier claims that at least 95% of the parts it supplies meet the product

specifications. In a sample of 500 parts received over the last 6 months, 36 were

defective. Test the supplier’s claim at the 5% level of significance.

6. In discussion of theMinitab Pulse.MTWdata set earlier in the book itwas noted that 35

students from a class of 92 ran on the spot, the decision whether or not to run

Table 7.20 Sample of distances (yards) achieved.

316 315 315 317 333 328 330 317

313 329 339 302 324 323 311 296
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supposedly based on the outcome of the flip of a coin by the student. Do these data

provide any evidence of ‘cheating’?

7. Under the Weights and Measures (Packaged Goods) Regulations 1986, display of the

text ‘330ml e’ on a bottle of beer with nominal content volume of 330ml means that

not more than 2.5% of bottles may be deficient in content volume by more than the

tolerable negative error (TNE) specified for the nominal quantity (Trading Standards

Net). The TNE for nominal volume of 330ml is 3% of the nominal volume.

A brewery has bottling machines which deliver amounts that are normally

distributed with known standard deviation 6ml and which are capable of filling

bottles with nominal capacities of both 330 and 500ml.

(i) Explain why, when filling 330ml bottles, the brewery should aim to set up the

filling process to operate with a mean of 332ml (to the nearest ml).

(ii) Following set-up for a run of 330ml bottles, after a run of 500ml bottles, a sample

of 24 bottles was checked and found to have the content volumes stored in Beer.

xls. Use hypothesis testing to investigate whether or not the machine has been set

up correctly.

8. This exercise has been created as an aid to understanding the concept of a confidence

interval. The worksheet Strength.MTW contains data for the tensile strengths

(N/mm2) of a sample of 16 components. Assume that the production process for the

components is known to operate with a standard deviation of 1.9 N/mm2.

Verify, using Minitab, that in a z-test of H0 :m¼ 50.0 versus H1 :m 6¼ 50.0 the

decision would be to acceptH0. Repeat the test for all the other null hypotheses listed

in Table 7.21 and record your decisions. Note the range of values for the population

mean, m, that would be accepted. By further changing of the mean value specified in

the null hypothesis, determine, to 2 decimal places, the range of mean values that

would be accepted. Check that the formula �x� 1:96s=
ffiffiffi

n
p

gives the same results, apart

form a small rounding error.

The range of mean values that would be accepted is a 95% confidence interval for

themean tensile strength. Check that the 95%confidence interval provided byMinitab

confirms your calculations.

Obtain a 99% confidence interval for the mean tensile strength. Note that with

greater confidence we now have a wider range of mean values that would be accepted.

Table 7.21 Decisions from tests of hypotheses.

Null hypothesis H0 Decision at 5% significance

level (two-tailed z-test)

m¼ 48.5

m¼ 49.0

m¼ 49.5

m¼ 50.0 Accept H0

m¼ 50.5

m¼ 51.0

m¼ 51.5
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9. Obtain a 95% confidence interval for the mean content volume from the bottle data in

Beer.xls. How does your answer confirm your earlier conclusion regarding set-up in

Exercise 6?

10. Suppose that a quality manager claims that 70% of units pass final inspection first time

and that you check a sample of 40 units from the database and find that 23 of them

passed final inspection first time.

Calculate the percentage of the sample that passed final inspection first time and

note your ‘gut feeling’ concerning the manager’s claim. Use Minitab to obtain a 95%

confidence interval for the proportion of the population of units which pass final

inspection first time and state whether the result lends support to the manager’s claim

or otherwise. Was your gut feeling supported by the statistical analysis?

Investigate the situation where checking a sample of 400 units revealed 230 failures.

11. The workbook Verify.xls contains information on whether or not a series of units

passed verification first time. Are the data consistent with themanufacturing operation

achieving a first-time pass rate of 80%?

12. A manufacturer of automatic teller machines introduced changes to the procedure for

installing the printer in the carcass as part of a process improvement initiative.Random

samples of installation times for a technician before and after the changes are tabulated

in Table 7.22 and available in Printer.MTW.

Investigate the evidence for a reduction in the mean installation time using both

parametric and nonparametric tests. Whenever possible check any assumptions

required.

As an exercise, perform the two-sample t-tests using the data as presented in the

worksheet, using the data in stacked form, and finally using the summarized data.

These three methods of presenting the data to Minitab correspond to Samples in one

column, Samples in different columns and Summarized data in the dialog box for

the two-sample t-test.

13. A process improvement project on the manufacture of light bulbs was carried out in

order to compare two different types of lead wire. Misfed lead wires require operator

intervention. Data on the average hourly number of misfed leads for 12 production

runs with the standard type of wire and for 12 production runs with a modified type of

wire are given inMisfeeds.MTW. Investigate the evidence for a process improvement

using both parametric and nonparametric tests. Whenever possible, check any

assumptions required.

14. The PCS-12 is a generic measure of physical health status. The measure has been

devised in such a way that in the general population of people in good health it has

mean 50 and standard deviation 10. Table 7.23 gives PCS-12 scores for a random

sample of patients who had hip joint replacement operations carried out, both

Table 7.22 Before and after samples of installation times.

Before 64 39 59 31 42 52 43

After 19 41 29 45 37 35 39
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immediately prior to the operation (Pre) and 6 months later (Post). The data are

available in PCS12.MTW.

(a) Perform both parametric and nonparametric tests of hypotheses, investigating any

assumptions requiredwhere possible, to investigatewhether or not the data provide

evidence of improvement in the physical health status of patients following

the operation.

(b) Investigate whether or not the post-operative data are consistent with the mean for

the general population.

15. Table 7.24 gives wear resistance data for four fabrics, obtained from a completely

randomized single-factor experiment inwhich four samples of each one of a set of four

fabrics of interest were tested. Wear was assessed by measuring the weight loss after a

specific number of cycles in the wear-testing machine. The data, available in Fabrics.

MTW, are from p.63 of Fundamental Concepts in the Design of Experiments, 5th

edition, by Charles R. Hicks and Kenneth V. Turner, Jr, copyright� 1964, 1973, 1982,

1993, 1999 and used by permission of Oxford University Press, Inc., NewYork. Carry

out a one-way ANOVA using Minitab, and perform diagnostic checks of assumptions

and follow-up analysis if appropriate. Summarize your findings.

16. Sample sizes may be unequal in an experiment with a single factor. Box et al. (2005,

p. 134) give an example on coagulation time for samples of blood from animals fed on

a fixed set four diets A, B, C and D which were of interest. (Box et al., 1978, p. 166).

The data are available in Coagulation.MTW. (Reproduced by permission of John

Wiley & Sons, Inc., New York.) Carry out an analysis of variance. The shorter the

coagulation time is, the better from an animal health point of view. What recom-

mendations would you make on the basis of the experiment?

17. Analyse the data in Exercises 15 and 16 using the Kruskal–Wallis procedure.

18. Analyse the data in Exercise 12 usingANOVAand verify that theP-value is exactly the

same as that obtained from a two-sample t-test (assuming equal variances). In this

situation the two tests are mathematically equivalent.

Table 7.23 Before and after PCS12 scores for a sample of 12 patients.

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Pre 36 45 30 63 48 52 44 44 45 51 39 44

Post 39 42 33 70 53 51 48 51 51 51 42 50

Table 7.24 Wear data for four fabrics.

Fabric

A B C D

1.93 2.55 2.40 2.33

2.38 2.72 2.68 2.40

2.20 2.75 2.31 2.28

2.25 2.70 2.28 2.25
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19. A company supplies a customer with many batches of raw material in a year. The

customer is interested in high yields of usable chemical in the batches. For quality

control of incoming material purposes three sample determinations of yield are made

for each batch.

The data, available in Batches.MTWand displayed in Table 7.25, are from p.78 of

Fundamental Concepts in theDesign of Experiments, 5th edition, byCharlesR.Hicks

and Kenneth V. Turner, Jr, copyright � 1964, 1973, 1982, 1993, 1999 and used by

permission of Oxford University Press, Inc., New York. Show that about 87% of the

variation in yield is due to batch-to-batch variation with the remaining 13% of

variation being due to variation within batches.

20. If four brands of car tyre A, B, C and D were to be tested using four tyres of each type

and four cars, explain why design 1 displayed in Table 7.26 would be unsatisfactory.

Table 7.27 gives the design and the results for the experiment actually carried out.

State the type of design used. Set up the data in Minitab, analyse them and report your

findings.

21. Table 7.28 gives weekly revenue (£000) for three city restaurants of the same size

belonging to a restaurant chain. The weeks were a random sample of weeks during

Table 7.25 Yield data for five batches.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

74 68 75 72 79

76 71 77 74 81

75 72 77 73 79

Table 7.26 Design 1.

Design 1 Car

P Q R S

A B C D

Tyre Brand A B C D

A B C D

A B C D

Table 7.27 Design 2.

Design 2 Car

P Q R S

Tyre Brand and

Wear (mm)

B(1.9) D(1.6) A(1.8) C(1.4)

C(1.7) C(1.7) B(1.8) D(1.4)

A(2.2) B(1.9) D(1.6) B(1.4)

D(1.8) A(1.9) C(1.5) A(1.8)
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2004. Analyse the data, stored in Restaurants.MTW, and report your findings. Is there

evidence from the data of a clear winner of ‘Restaurant of the Year’ from the point of

view of revenue?

22. Set up the data fromExercise 14 as data froma randomized complete block experiment

with the patients as blocks. Carry out anANOVAand verify that theP-value for testing

the effect of the operation is the same aswas obtained from the paired t-test. Paired data

experiments are a special case of randomized complete block designs.

Table 7.28 Weekly turnover data for three restaurants.

Restaurant

Week 1 2 3

1 8.3 7.4 9.2

2 10.7 10.0 12.8

3 9.5 8.5 14.6

4 3.2 3.9 7.2

5 12.7 12.6 13.2
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